Skip to main content

Advertisement

Log in

Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ALPHA atrial natriuretic peptide (α-ANP) and brain natriuretic peptide are homologous polypeptide hormones involved in the regulation of fluid and electrolyte homeostasis1,2. These two natriuretic peptides apparently share common receptors and stimulate the intracellular production of cyclic GMP as a second messenger1. Molecular cloning has defined two types of natriuretic peptide receptors: the ANP-C receptor of relative molecular mass (Mr) 60–70,000 (60–70 K), which is not coupled to cGMP production and may function in the clearance of ANP (refs 3,4) and the ANP-A receptor of Mr 120–140 K, which is a membrane form of guanylate cyclase in which ligand binding to the extracellular domain activates the cytoplasmic domain of the enzyme5,6. Here we report the cloning and expression of a second human natriuretic peptide-receptor guanylate cyclase, the ANP-B receptor. The ANP-B receptor is preferentially activated by porcine brain natriuretic peptide rather than human α-ANP, whereas the ANP-A receptor responds similarly to both natriuretic peptides. These observations may have important implications for our understanding of the central and peripheral control of cardiovascular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inagami, T. J. biol. Chem. 264, 3043–3046 (1989).

    CAS  PubMed  Google Scholar 

  2. Baxter, J. D., Lewicki, J. A. & Gardner, D. G. Biol Technology 6, 529–546 (1988).

    CAS  Google Scholar 

  3. Fuller, F. et al. J. biol. Chem. 263, 9395–9401 (1988).

    CAS  PubMed  Google Scholar 

  4. Maack, T. et al. Science 238, 675–678 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lowe, D. G. et al. EMBO J. 8, 1377–1384 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chinkers, M. et al. Nature 338, 78–83 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Von Heijne, G. Eur. J. Biochem. 133, 17–21 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Sabatini, D. D., Kreibich, G., Morimoto, T. & Adesnik, M. J. Cell Biol. 92, 1–22 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Singh, S. et al. Nature 334, 708–712 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Meloche, S., Ong, H. & DeLean, A. J. biol. Chem. 262, 10252–10258 (1987).

    CAS  PubMed  Google Scholar 

  11. Meloche, S., McNicholl, N., Liu, B., Ong, H. & DeLean, A. Biochemistry 27, 8151–8158 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Holland, R., Woodgett, J. R. & Hardie, D. G. FEBS Lett. 154, 269–273 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Davis, R. J. & Czech, M. P. J. biol. Chem. 260, 2543–2551 (1985).

    CAS  PubMed  Google Scholar 

  14. Kurose, H., Inagami, T. & Oi, M. FEBS Lett. 219, 375–379 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Song, D.-L., Kohse, K. P. & Murad, F. FEBS Lett. 232, 125–129 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Koesling, D. et al. FEBS Lett. 239, 29–34 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Krupinski, J. et al. Science 244, 1558–1564 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kojima, M., Minamino, N., Kangawa, K. & Matsuo, H. Biochem. biophys. Res. Commun. 159, 1420–1426 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Pennica, D. et al. Science 236, 83–88 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chen, E. Y. et al. Genomics 4, 479–497 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Ullrich, A. et al. Nature 313, 750–761 (1985).

    Article  ADS  Google Scholar 

  22. Coussens, L. et al. Science 233, 859–866 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Peralta, E. et al. Science 236, 600–605 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Garbers, D. L. J. biol. Chem. 264, 9103–9106 (1989).

    CAS  PubMed  Google Scholar 

  25. Saper, C. B. et al. Neurosci. Lett. 96, 29–34 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Light, D. B., Schweibert, E. M., Karlson, K. H. & Stanton, B. A. Science 243, 383–385 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Francis, S. H., Lincoln, T. M. & Corbin, J. D. J. biol. Chem. 255, 620–626 (1980).

    CAS  PubMed  Google Scholar 

  28. Goldberg, N. D. & Haddox, M. K. A. Rev. Biochem. 46, 823–896 (1977).

    Article  CAS  Google Scholar 

  29. Lawn, R. M., Fritsch, E. F., Parker, R. C., Blake, G. & Maniatis, T. Cell 15, 1157–1174 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Mullis, K. B. & Faloona, F. A. Meth. Enzymol. 155, 335–350 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Ms., Lowe, D., Lewis, M. et al. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341, 68–72 (1989). https://doi.org/10.1038/341068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341068a0

  • Springer Nature Limited

This article is cited by

Navigation