Skip to main content
Log in

Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RECENT studies in invertebrates indicate that a rapid genomic response to neuronal stimulation has a critical role in long-term changes in synaptic efficacy1. Because several of the genes (immedi-ately early genes; lEGs) that respond rapidly to growth factor stimulation of vertebrate cells in vitro2-7 are also activated by neuronal stimulation in vivo8-13, attention has focused on the possibility that they play a part in synaptic plasticity in vertebrate nervous systems. Four lEGs thought to encode transcription fac-tors, zif/2685 (also termed Egr-ll4, NGFI-A15, Krox2416), C-fOS17, c-jun18, and jun-B7 are rapidly induced in the brain by seizure activity8,11,13, and we have now studied the induction of these genes in a well-characterized model of synaptic plasticity in the verte-brate brain—-long-term potentiation (LTP) of the perforant path-granule cell (pp-gc) synapse in vivo19. We found that high-frequency (but not low-frequency) stimulation of the pp-gc synapse markedly increases zif/268 messenger RNA (mRNA) levels in the ipsilateral granule cell neurons; mRNA of c-fos, c-jun and jun-B is less consistently increased. The stimulus frequency and intensity required to increase zif/268 mRNA levels are similar to those required to induce LTP, which is also seen only ipsilaterally, and both responses are blocked by NMDA-receptor antagonists as well as by convergent synaptic inhibitory inputs already known to block LTP20. Accordingly, zif/268 mRNA levels and LTP seem to be regulated by similar synaptic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montarolo, P. G. et al. Science 234, 1249–1254 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Cochran, B. H., Keffel, A. C. & Stiles, C. D. Cell 33, 939–947 (1983).

    Article  CAS  Google Scholar 

  3. Lau, L. F. & Nathans, D. EMBO J. 4, 3145–3151 (1985).

    Article  CAS  Google Scholar 

  4. Greenberg, M. E., Ziff, E. B. & Greene, L. A. Science 234, 80–83 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Christy, B. A., Lau, L. F. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 85, 7857–7861 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Ryder, K. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 85, 8464–8467 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Ryder, L., Lau, L. F. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 85, 1487–1491 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Morgan, J. I., Cohen, D. R., Hempstead, J. L. & Curran, T. Science 237, 192–197 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Sagar, S. M., Sharp, F. R. & Curran, T. Science 240, 1328–1331 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Hunt, S. P., Pini, A. & Evan, G. Nature 328, 632–634 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Dragunow, M. & Robertson, H. A. Nature 329, 441–442 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Douglas, R. M., Dragunow, M. & Robertson, H. A. Molec. Brain Res. 4, 259–262 (1988).

    Article  Google Scholar 

  13. Saffen, D. W. et al. Proc. natn. Acad. Sci. U.S.A. 85, 7795–7799 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Sukhatme, V. P. et al. Cell 53, 37–43 (1988).

    Article  CAS  Google Scholar 

  15. Milbrandt, J. Science 238, 797–799 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Lemaire, P., Revelant, O., Bravo, R. & Charnay, P. Proc. natn. Acad. Sci. U.S.A. 85, 4691–4695 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Franza, B. R. Jr, Rauscher, F. J. III, Josephs, S. F. & Curran, T. Science 239, 1150–1153 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Rauscher, F. J. III et al. Science 240, 1010–1016 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Bliss, T. V. P. & Lynch, M. A. in Long-term Potentiation: From Biophysics to Behavior, 3–72 (Alan R. Liss, Inc., 1988).

    Google Scholar 

  20. Douglas, R. M., Goddard, G. V. & Riives, M. Brain Res. 240, 259–272 (1982).

    Article  CAS  Google Scholar 

  21. McNaughton, B. L., Douglas, R. M. & Goddard, G. V. Brain Res. 157, 277–293 (1978).

    Article  CAS  Google Scholar 

  22. Bliss, T. V. P., Goddard, G. V. & Riives, M. J. Physiol., Lond. 334, 475–491 (1983).

    Article  CAS  Google Scholar 

  23. Goldowitz, D. W., White, F., Steward, O., Cotman, C. W. & Lynch, G. S. Expl Neurol. 47, 433–441 (1975).

    Article  CAS  Google Scholar 

  24. Lau, L. F. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 84, 1182–1186 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Errington, M. L., Lynch, M. A. & Bliss, T. V. P. Neuroscience 20, 279–284 (1987).

    Article  CAS  Google Scholar 

  26. Nicoll, R. A., Kauer, J. A. & Malenka, R. C. Neuron 1, 97–103 (1988).

    Article  CAS  Google Scholar 

  27. Wong, E. H. F. et al. Proc. natn. Acad. Sci. U.S.A. 83, 7104–7108 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Abraham, W. C. & Mason, S. E. Brain Res. 462, 40–46 (1988).

    Article  CAS  Google Scholar 

  29. Murphy, D. E., Hutchinson, A. J., Hurt, S. D., Williams, M. & Sills, M. A. Br. J. Pharmac. 95, 932–938 (1988).

    Article  CAS  Google Scholar 

  30. Lodge, D. et al. Br. J. Pharmac. 95, 957–965 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, A., Saffen, D., Baraban, J. et al. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476 (1989). https://doi.org/10.1038/340474a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340474a0

  • Springer Nature Limited

This article is cited by

Navigation