Skip to main content
Log in

A numerical experiment on the chaotic behaviour of the Solar System

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LAPLACE and Lagrange made an essential contribution to the study of the stability of the Solar System by proving analytically that, to first order in the masses, inclinations and eccentricities of their orbits, the planets move quasiperiodically. Since then, many analytic quasiperiodic solutions have been sought to higher order1–10.1 have recently constructed an extensive analytic system of averaged differential equations containing the secular evolution of the orbits of the eight main planets, accurate to second order in the planetary masses and to fifth order in eccentricity and inclination, and including corrections from general relativity and the Moon8–10. Here I describe the results of a numerical integration of this system, extending backwards over 200 million years. The solution is chaotic, with a maximum Lyapunov exponent that reaches the surprisingly large value of ∼ 1/5 Myr–1. The motion of the Solar System is thus shown to be chaotic, not quasiperiodic. In particular, predictability of the orbits of the inner planets, including the Earth, is lost within a few tens of millions of years. This does not mean that after such a short timespan we will see catastrophic events such as a crossing of the orbits of Venus and Earth; but the traditional tools of quantitative celestial mechanics (numerical integrations or analytical theories), which aim at unique solutions from given initial conditions, will fail to predict such events. The problem of the stability of the Solar System will have to be set up again, and the qualitative methods initiated by Poincare definitely need to replace quantitative methods in this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, G. W. Astr. J. 17(11), 81–87 (1897).

    Article  ADS  Google Scholar 

  2. Brouwer, D. & Van Woerkom, A. J. J. Astr. Pap. Am. Ephem. 13(2), 81–107 (1950).

    Google Scholar 

  3. Brumberg, V. A. Analytical Algorithms of Celestial Mechanics (Nauka, Moscow; in Russian) (1980).

    MATH  Google Scholar 

  4. Bretagnon, P. Astr. Astrophys. 30, 141–154 (1974).

    ADS  Google Scholar 

  5. Duriez, L. Astr. Astrophys. 54, 93–112 (1977).

    ADS  Google Scholar 

  6. Duriez, L. thesis, Lille (1979).

  7. Message, P. J. Celes. Mech. 26, 25–39 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  8. Laskar, J. thesis, Observatoire de Paris (1984).

  9. Laskar, J. Astr. Astrophys. 144, 133–146 (1985).

    ADS  Google Scholar 

  10. Laskar, J. Astr. Astrophys. 157, 59–70 (1986).

    ADS  Google Scholar 

  11. Poincaré, H. Méthodes Nouvelles de la Mécanique Celeste Vol. 1 (Gauthier-Villars, Paris, 1892).

    MATH  Google Scholar 

  12. Poincaré, H. Méthodes Nouvelles de la Mécanique Celeste Vol. 2 (Gauthier-Villare, Paris 1893).

    MATH  Google Scholar 

  13. Arnold, V. Méthodes Mathématiques de la Mécanique Classique (MIR, Moscow, 1976).

    Google Scholar 

  14. Cohen, C. J., Hubbard, E. C. & Oesterwinter, C. Astr. Pap. Am. Ephem. 22(1), 1–42 (1973).

    Google Scholar 

  15. Kinoshita, H. & Nakai, H. Celes. Mech. 34, 203–217 (1984).

    Article  ADS  Google Scholar 

  16. Milani, A., Nobili, A. M., Fox, K. & Carpino, M. Nature 319, 386–388 (1986).

    Article  ADS  Google Scholar 

  17. Applegate, J. H., Douglas, M. R., Gursel, Y., Sussman, G. J. & Wisdom, J. Astr. J. 92, 176–194 (1986).

    Article  ADS  Google Scholar 

  18. Carpino, M., Milani, A. & Nobili, A. M. Astr. Astrophys. 181, 182–194 (1987).

    ADS  Google Scholar 

  19. Sussman, G. J. & Wisdom, J. Science 241, 433–437 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Newhall, X. X., Standish, E. M. & Willians, J. G. Astr. Astrophys. 125, 150–167 (1983).

    ADS  Google Scholar 

  21. Laskar, J. Astr. Astrophys. 198, 341–362 (1988).

    ADS  Google Scholar 

  22. Laskar, J. in Proc. 10th ERAM of the IAU Vol. 3 (ed. Sidlichovsky, M.) 95–98 (1987).

    Google Scholar 

  23. Nobili, A. M., Carpino, M. & Milani, A., Astr. Astrophys. (in the press).

  24. Bennettin, G., Galgani, L., Giorgilli, A. & Strelcyn, J. M. Meccanica March 1980, 9–30.

  25. Froeschle, Cl. in Stability of the Solar Systems and its Minor Natural and Artificial Bodies (ed. Szebehely, V. G.) 265–282 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  26. Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate (Reidel, Dordrecht, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laskar, J. A numerical experiment on the chaotic behaviour of the Solar System. Nature 338, 237–238 (1989). https://doi.org/10.1038/338237a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338237a0

  • Springer Nature Limited

This article is cited by

Navigation