Skip to main content
Log in

Mutation rates differ among regions of the mammalian genome

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In the traditional view of molecular evolution, the rate of point mutation is uniform over the genome of an organism and variation in the rate of nucleotide substitution among DNA regions reflects differential selective constraints1,2. Here we provide evidence for significant variation in mutation rate among regions in the mammalian genome. We show first that substitutions at silent (degenerate) sites in protein-coding genes in mammals seem to be effectively neutral (or nearly so) as they do not occur significantly less frequently than substitutions in pseudogenes. We then show that the rate of silent substitution varies among genes and is correlated with the base composition of genes and their flanking DNA. This implies that the variation in both silent substitution rate and base composition3 can be attributed to systematic differences in the rate and pattern of mutation over regions of the genome. We propose that the differences arise because mutation patterns vary with the timing of replication of different chromosomal regions in the germline. This hypothesis can account for both the origin of isochores in mammalian genomes4 and the observation5 that silent nucleotide substitutions in different mammalian genes do not have the same molecular clock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).

    Book  Google Scholar 

  2. Sharp, P. M. & Li, W.-H. Molec. biol. Evol. 4, 222–230 (1987).

    CAS  PubMed  Google Scholar 

  3. Aota, S. & Ikemura, T. Nucleic Acids Res. 14, 6345–6355 (1986).

    Article  CAS  Google Scholar 

  4. Bernardi, G. et al. Science 228, 953–958 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Li, W.-H., Tanimura, M. & Sharp, P. M. J. molec. Evol. 25, 330–342 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Li, W.-H., Gojobori, T. & Nei, M. Nature 292, 237–239 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Miyata, T. & Hayashida, H. Proc. natn. Acad. Sci. U.S.A. 78, 5739–5743 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Fukasawa, K. M. et al. Genetics 115, 177–184 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyata, T. et al. J. molec. Evol. 19, 28–35 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Filipski, J. J. theor. Biol. 134, 159–164 (1988).

    Article  CAS  Google Scholar 

  11. Smithies, O., Engels, W. R., Devereux, J. R., Slightom, J. L. & Shen, S-h. Cell 26, 345–353 (1981).

    Article  CAS  Google Scholar 

  12. Mouchiroud, D. & Gautier, C. Molec. biol. Evol. 5, 192–194 (1988).

    CAS  PubMed  Google Scholar 

  13. Nadeau, J. H. & Taylor, B. A. Proc. natn. Acad. Sci. U.S.A. 81, 814–818 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Friedberg, E. C. DNA Repair (Freeman, New York, 1985).

    Google Scholar 

  15. Topal, M. D. & Fresco, J. R. Nature 263, 285–289 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Holmquist, G. P. Am. J. hum. Genet. 40, 151–173 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leeds, J. M., Slabaugh, M. B. & Mathews, C. K. Molec. cell Biol. 5, 3443–3450 (1985).

    Article  CAS  Google Scholar 

  18. Kelly, T. & Stillman, B. (eds) Cancer Cells 6: Eukaryotic DNA Replication (Cold Spring Harbor Laboratory, New York, 1988).

  19. Fersht, A. R. & Knill-Jones, J. W. Proc. natn. Acad. Sci. U.S.A. 78, 4251–4255 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Holmquist, G., Gray, M., Porter, T. & Jordan, J. Cell 31, 121–129 (1982).

    Article  CAS  Google Scholar 

  21. Brown, E. H. et al. Molec cell. Biol. 7, 450–457 (1987).

    Article  CAS  Google Scholar 

  22. Filipski, J. FEBS Lett. 217, 184–186 (1987).

    Article  CAS  Google Scholar 

  23. Bohr, V. A., Phillips, D. H. & Hanawalt, P. C. Cancer Res. 47, 6426–6436 (1987).

    CAS  PubMed  Google Scholar 

  24. Prelich, G. & Stillman, B. Cell 53, 117–126 (1988).

    Article  CAS  Google Scholar 

  25. Bernardi, G. & Bernardi, G. J. molec. Evol. 24, 1–11 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Gillespie, J. H. Genetics 113, 1077–1091 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ikemura, T. Molec. biol Evol. 2, 13–34 (1985).

    CAS  PubMed  Google Scholar 

  28. Hanai, R. & Wada, A. J. molec Evol. 27, 321–325 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Nei, M. & Graur, D. Evol. Biol. 17, 73–118 (1984).

    Article  Google Scholar 

  30. Tajima, F. & Nei, M. Molec. biol. Evol. 1, 269–285 (1984).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, K., Sharp, P. & Li, WH. Mutation rates differ among regions of the mammalian genome. Nature 337, 283–285 (1989). https://doi.org/10.1038/337283a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337283a0

  • Springer Nature Limited

This article is cited by

Navigation