Skip to main content
Log in

Estimation of the rate of volcanism on Venus from reaction rate measurements

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Maintenance of the global H2SO4 clouds on Venus requires volcanism to replenish SO2, which is continually removed from the atmosphere by reaction with calcium minerals on the planet's surface1–4. Here we present laboratory rate data for the reaction between SO2 and calcite (CaCO3) to form anhydrite (CaSO4). If this reaction rate represents the SO2 reaction rate on Venus, then all SO2 in the venusian atmosphere (and thus the clouds) will disappear in 1.9 Myr unless volcanism replenishes the lost SO2. The required volcanism rate, which depends on the sulphur content of the erupted material, is in the range 0.4–11 km3 of magma erupted per year. The Venus surface composition at the Venera 13, 14 and Vega 2 landing sites5,6implies a volcanism rate of approximately 1 km3 yr−1. This geochemically estimated rate can be used to determine if either (or neither) of two discordant geophysically estimated rates (2 km3 yr−1 versus 200–300 km3 yr−1)7–9 is correct. It also suggests that Venus may be less volcanically active than the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prinn, R. G. in Recent Advances in Planetary Meteorology (ed. Hunt, G. E.) 1–15 (Cambridge University Press, London, 1985).

    Google Scholar 

  2. Prinn, R. G. Sci. Am. 252, 46–53 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Prinn, R. G. in The Photochemistry of Atmospheres (ed. Levine, J.) 281–336 (Academic, New York, 1985).

    Book  Google Scholar 

  4. Fegley, B. Jr Lunar planet. Sci. XIX, 315–316 (1988).

    ADS  Google Scholar 

  5. Surkov, Yu. A., Barsukov, V. L., Moskalyova, L. P., Kharyukova, V. P. & Kemurdzhian, A. L. Proc. 14th, Lunar. planet. Sci. Conf. J. geophys. Res. 89, B393–B402 (1984).

    Article  ADS  Google Scholar 

  6. Surkov, Yu. A. et al. Proc. 17th, Lunar planet. Sci. Conf. J. geophys. Res. 91, E215–E218 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Grimm, R. E. & Solomon, S. C. Geophys. Res. Lett. 14, 538–541 (1987).

    Article  ADS  Google Scholar 

  8. Turcotte, D. L. J. geophys. Res. (in the press).

  9. Solomon, S. C. & Head, J. W. J. geophys. Res. 87, 9236–9246 (1982).

    Article  ADS  Google Scholar 

  10. Urey, H. C. in Handbuch der Physik Vol. 52, 363–418 (Springer, Berlin, 1959).

    Google Scholar 

  11. Mueller, R. F. Icarus 3, 285–298 (1964).

    Article  ADS  CAS  Google Scholar 

  12. Vinogradov, A. P. & Volkov, V. P. Geochim. Int. 8, 463–467 (1971).

    Google Scholar 

  13. Lewis, J. S. Earth planet. Sci. Lett. 10, 73–80 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Volkov, V. P., Zolotov, M. Yu. & Khodakovsky, I. L. in Chemistry and Physics of Terrestrial Planets (ed. Saxena, S. K.) 136–190 (Springer, New York, 1986).

    Book  Google Scholar 

  15. Barsukov, V. L., Surkov, Yu. A., Dmitriyev, L. V. & Khodakovsky, I. L. Geochem. Int. 23, 53–65 (1986).

    Google Scholar 

  16. Von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. G. in Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (University of Arizona Press, Tucson, 1983).

    Google Scholar 

  17. Masursky, H. et al. J. geophys. Res. 85, 8232–8260 (1980).

    Article  ADS  Google Scholar 

  18. Seiff, A. in Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 1045–1048 (University of Arizona Press, Tucson, 1983).

    Google Scholar 

  19. Marshall, J. R., Greeley, R., Tucker, D. W. & Pollack, J. B. Icarus 74, 495–515 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Counselman, C. C. III, Gourevitch, S. A., King, R. W., Loriot, G. B. & Prinn, R. G. Science 205, 85–87 (1979).

    Article  ADS  Google Scholar 

  21. Esposito, L. W., Knollenberg, R. G., Marov, M. Ya., Toon, O. B. & Turco, R. P. in Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 474–564 (University of Arizona Press, Tucson, 1983).

    Google Scholar 

  22. Kyte, F. T. & Wasson, J. T. Science 232, 1225–1229 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Mason, B. (ed.) Handbook of Elemental Abundances in Meteorites (Gordon & Breach, New York 1971).

  24. Basilevsky, A. T. & Head, J. W. A. Rev. Earth planet. Sci. 23, 295–317 (1988).

    Article  ADS  Google Scholar 

  25. Esposito, L. W. Science 223, 1072–1074 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Esposito, L. W. J. geophys. Res. 93, 5267–5276 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Parsons, B. Geophys. J. R. ast. Soc. 67, 437–448 (1981).

    Article  ADS  Google Scholar 

  28. Ronov, A. B. & Yaroshevsky, A. A. Geochim. Int. 12, 89–121 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fegley, B., Prinn, R. Estimation of the rate of volcanism on Venus from reaction rate measurements. Nature 337, 55–58 (1989). https://doi.org/10.1038/337055a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337055a0

  • Springer Nature Limited

This article is cited by

Navigation