Skip to main content
Log in

Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The body pattern along the anterior-posterior axis of the insect embryo is thought to be established by two organizing centres localized at the ends of the egg1. Genetic analysis of the polarity-organizing centres in Drosophila has identified three distinct classes of maternal effect genes that organize the anterior, pos-terior and terminal pattern elements of the embryo2. The factors provided by these gene classes specify the patterns of expression of the segmentation genes at defined positions along the longi-tudinal axis of the embryo3,4. The system responsible for organizing the posterior segment pattern is a group of at least seven maternal genes2 and the zygotic gap gene knirps (kni). Their mutant phenotype has adjacent segments in the abdominal region of the embryo deleted2. Genetic analysis and cytoplasmic transplantation experiments suggested that these maternal genes are required to generate a 'posterior activity' that is thought to activate the expression of kni (reviewed in ref. 2). The molecular nature of the members of the posterior group is still unknown. Here we report the molecular characterization of the kni gene that codes for a member of the steroid/thyroid receptor superfamily of proteins which in vertebrates act as ligand-dependent DNA-binding tran-scription regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sander, K. Adv. Insect Physiol. 12, 125–238 (1976).

    Article  Google Scholar 

  2. Nüsslein-Volhard, C., Frohnhöfer, H.-G. & Lehmann, R. Science 238, 1675–1681 (1987).

    Article  ADS  Google Scholar 

  3. Knipple, D. C. et al. Nature 317, 40–44 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Tautz, D. et al. Nature 332, 281–284 (1987).

    Article  ADS  Google Scholar 

  5. Lehmann, R. Development (in the press).

  6. Evans, R. M. Science 240, 889–895 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Rosenberg, U. B. et al. Nature 319, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Evans, R. M. & Hollenberg, S. N. Cell 52, 1–3 (1988).

    Article  CAS  Google Scholar 

  9. Thaller, C. & Eichele, G. Nature 227, 625–627 (1987).

    Article  ADS  Google Scholar 

  10. Strickland, S. & Mahdavi, V. Cell 15, 393–395 (1978).

    Article  CAS  Google Scholar 

  11. Lehmann, R. & Nüisslein-Volhard, C. Nature 329, 167–170 (1987).

    Article  ADS  Google Scholar 

  12. Tautz, D. Nature 332, 281–284 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Gaul, U. & Jäckle, H. Cell 51, 549–555 (1987).

    Article  CAS  Google Scholar 

  14. Akam, M. E. Development 101, 1–22 (1987).

    CAS  Google Scholar 

  15. Rosenberg, U. B., Preiss, A., Seifert, E., Jäckle, H. & Knipple, D. C. Nature 313, 703–706 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Lehmann, R. thesis, Univ. Tübingen (1985).

  17. Wieschaus, E., Nüusslein-Volhard, C. & Kluding, H. Devl Biol. 104, 172–186 (1984).

    Article  CAS  Google Scholar 

  18. Preiss, A., Rosenberg, U. B., Kienlin, A., Seifert, E. & Jäckie, H. Nature 313, 27–32 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Pirrotta, V., Jäckle, H. & Edström, J. E. in Genetic Engineering: Principles and Methods Vol. 5, 1–17 (Plenum, New York, 1983).

    Book  Google Scholar 

  20. Hafen, E., Basler, K., Edström, J. E. & Rubin, G. M. Science 236, 55–63 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  22. Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. Nature 330, 444–450 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Zahraoui, A. & Cuny, G. Eur. J. Biochem 166, 63–69 (1987).

    Article  CAS  Google Scholar 

  24. Sanger, F., Nicklen, S. & Coulson, A. R. Proc natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Benbrook, D. & Pfahl, M. Science 238, 788–791 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Nakai, A. et al. Proc. natn. Acad. Sci. U.S.A. 85, 2781–2785 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Weinberger, C. et al. Nature 324, 641–646 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Debuire, B. et al. Science 224, 1456–1459 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Giguere, V., Ong, E. S., Segui, P. & Evans, R. M. Nature 330, 624–629 (1987).

    Article  ADS  CAS  Google Scholar 

  30. de The, H., Marchio, A., Tiollais, P. & Dejan, A. Nature 330, 667–670 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Brand, N. et al. Nature 332, 850–853 (1988).

    Article  ADS  CAS  Google Scholar 

  32. Benbrook, D., Lernhardt, E. & Pfahl, M. Nature 333, 669–672 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Hollenberg, S. M. et al. Nature 318, 635–641 (1985).

    Article  ADS  CAS  Google Scholar 

  34. Govindan, M. V., Devic, M., Green, S., Gronemeyer, H. & Chambon, P. Nucleic Acids Res. 13, 8293–8304 (1985).

    Article  CAS  Google Scholar 

  35. Misrahi, M. et al. Biochem. biophys. Res Commun. 143, 740–748 (1987).

    Article  CAS  Google Scholar 

  36. Arizza, J. L. et al. Science 237, 268–275 (1987).

    Article  ADS  Google Scholar 

  37. Chang, C., Kokontis, J. & Shutsung, L. Science 240, 324–326 (1988).

    Article  ADS  CAS  Google Scholar 

  38. Lubahn, D. B. et al. Science 240, 327–330 (1988).

    Article  ADS  CAS  Google Scholar 

  39. Baker, A. R. et al. Proc. natn. Acad. Sci. U.S.A. 85, 3294–3298 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauber, U., Pankratz, M., Kienlin, A. et al. Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps. Nature 336, 489–492 (1988). https://doi.org/10.1038/336489a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336489a0

  • Springer Nature Limited

This article is cited by

Navigation