Skip to main content
Log in

Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The structure–function relationship of the nicotinic acetylcholine receptor (AChR) has been effectively studied by the combination of complementary DNA manipulation and single-channel current analysis1–6. Previous work with chimaeras between the Torpedo californica and bovine AChR δ-subunits has shown that the region comprising the hydrophobic segment M2 and its vicinity contains an important determinant of the rate of ion transport through the AChR channel5. It has also been suggested that this region is responsible for the reduction in channel conductance caused by divalent cations5 and that segment M2 contributes to the binding site of noncompetitive antagonists7,8. To identify those amino acid residues that interact with permeating ions, we have introduced various point mutations into the Torpedo AChR subunit cDNAs to alter the net charge of the charged or glutamine residues around the proposed transmembrane segments9–15. The single-channel conductance properties of these AChR mutants expressed in Xenopus laevis oocytes indicate that three clusters of negatively charged and glutamine residues neighbouring segment M2 of the α-, β-, γ- and δ-subunits, probably forming three anionic rings, are major determinants of the rate of ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishina, M. et al. Nature 307, 604–608 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Mishina, M. et al. Nature 313, 364–369 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Sakmann, B. et al. Nature 318, 538–543 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Mishina, M. et al. Nature 321, 406–411 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Imoto, K. et al. Nature 324, 670–674 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Tobimatsu, T. et al. FEBS Lett. 222, 56–62 (1987).

    Article  CAS  Google Scholar 

  7. Giraudat, J., Dennis, M., Heidmann, T., Chang, J.-Y. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 83, 2719–2723 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Hucho, F., Oberthür, W. & Lottspeich, F. FEBS Lett. 205, 137–142 (1986).

    Article  CAS  Google Scholar 

  9. Noda, M. et al. Nature 299, 793–797 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Noda, M. et al. Nature 301, 251–255 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Noda, M. et al. Nature 302, 528–532 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S. Proc. natn. Acad. Sci. U.S.A. 80, 1111–1115 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Devillers-Thiery, A., Giraudat, J., Bentaboulet, M. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 80, 2067–2071 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Guy, H. R. Biophys. J. 45, 249–261 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Finer-Moore, J. & Stroud, R. M. Proc. natn. Acad. Sci. U.S.A. 81, 155–159 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Brisson, A. & Unwin, P. N. T. Nature 315, 474–477 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Takai, T. et al. Nature 315, 761–764 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Takai, T. et al. Eur. J. Biochem. 143, 109–115 (1984).

    Article  CAS  Google Scholar 

  19. Witzemann, V., Barg, B., Nishikawa, Y., Sakmann, B. & Numa, S. FEBS Lett. 223, 104–112 (1987).

    Article  CAS  Google Scholar 

  20. Shibahara, S. et al. Eur. J. Biochem. 146, 15–22 (1985).

    Article  CAS  Google Scholar 

  21. Yu, L., LaPolla, R. J. & Davidson, N. Nucleic Acids Res. 14, 3539–3555 (1986).

    Article  CAS  Google Scholar 

  22. Boulter, J. et al. J. Neurosci. Res. 16, 37–49 (1986).

    Article  CAS  Google Scholar 

  23. Boulter, J. et al. Nature 319, 368–374 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Schofield, P. R. et al. Nature 328, 221–227 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Grenningloh, G. et al. Nature 328, 215–220 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Kubo, T. et al. Eur. J. Biochem. 149, 5–13 (1985).

    Article  CAS  Google Scholar 

  27. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  28. Nakamaye, K. L. & Eckstein, F. Nucleic Acids Res. 14, 9679–9698 (1986).

    Article  CAS  Google Scholar 

  29. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

  30. Methfessel, C. et al. Pflügers Arch. ges. Physiol. 407, 577–588 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imoto, K., Busch, C., Sakmann, B. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988). https://doi.org/10.1038/335645a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335645a0

  • Springer Nature Limited

This article is cited by

Navigation