Skip to main content
Log in

Activation in vitro of sequence-specific DNA binding by a human regulatory factor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 10 November 1988

Abstract

The human heat-shock factor (HSF) regulates heat-shock genes in response to elevated temperature1–6. When human cells are heated to 43 °C, HSF is modified post-translationally from a form that does not bind DNA to a form that binds to a specific sequence (the heat-shock element, HSE7,8) found upstream of heat-shock genes6. To investigate the transduction of the heat signal to HSF, and more generally, how mammalian cells respond at the molecular level to environmental stimuli, we have developed a cell-free system that exhibits heat-induced activation of human HSF in vitro. Comparison of HSF activation in vitro and in intact cells suggests that the response of human cells to heat shock involves at least two steps. First, an ATP-independent, heat-induced alteration of HSF allows it to bind the HSE; the temperature at which activation occurs in vitro implies that a human factor directly senses temperature. Second, HSF is phosphorylated. It is possible that similar multi-step activation mechanisms play a role in the response of eukaryotic cells to a variety of environmental stimuli, and that these mechanisms evolved to increase the range and flexibility of the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritossa, F. M. Experimenlia 18, 571–572 (1962).

    Article  CAS  Google Scholar 

  2. Nover, L. Heal Shock Response of Eukaryolic Cells (Springer, Berlin, 1984).

    Google Scholar 

  3. Craig, E. A. CRC Crit. Rev. Biochem. 18, 239–280 (1985).

    Article  CAS  Google Scholar 

  4. Pelham, H. R. B. Trends Genet. 1, 31–35 (1985).

    Article  CAS  Google Scholar 

  5. Lindquist, S. A. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  Google Scholar 

  6. Kingston, R. E., Schuetz, T. J. & Larin, Z. Molec. cell. Biol. 7, 1530–1534 (1987).

    Article  CAS  Google Scholar 

  7. Pelham, H. R. B. & Bienz, M. EMBO J. 1, 1473–1477 (1982).

    Article  CAS  Google Scholar 

  8. Mirault, M.-E., Southgate, R. & Delwart, E. EMBO J. 1, 1279–1285 (1982).

    Article  CAS  Google Scholar 

  9. Yamamoto, K. R. A. Rev. Genet. 19, 209–252 (1985).

    Article  CAS  Google Scholar 

  10. Sen, R. & Baltimore, D. Cell 47, 921–928 (1986).

    Article  CAS  Google Scholar 

  11. Prywes, R. & Roeder, R. G. Cell 47, 777–784 (1986).

    Article  CAS  Google Scholar 

  12. Hayes, T. E., Kitchen, A. M. & Cochran, B. H. Proc. nat. Acad. Sci. U.S.A. 84, 1272–1276 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Zimarino, V. & Wu, C. Nature 327, 727–730 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Seguin, C. & Hamer, D. H. Science 235, 1383–1387 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Baeuerle, P. A. & Baltimore, D. Cell 53, 211–217 (1988).

    Article  CAS  Google Scholar 

  16. Sorger, P. K., Lewis, M. J. & Pelham, H. R. B. Nature 329, 81–84 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1589 (1983).

    Article  CAS  Google Scholar 

  18. Fried, M. & Crothcrs, D. M. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  Google Scholar 

  19. Siebenlist, U. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 77, 122–126 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Gilman, M. Z., Wilson, R. N. & Weinberg, R. A. Molec. cell. Biol. 6, 4305–4316 (1986).

    Article  CAS  Google Scholar 

  21. Anantham, J., Goldberg, A. L. & Voellmy, R. Science 232, 522–524 (1986).

    Article  ADS  Google Scholar 

  22. Finley, D., Ciechanover, A. & Varshavsky, A. Cell 37, 43–55 (1984).

    Article  CAS  Google Scholar 

  23. Golf, S. A. & Goldberg, A. L. Cell 41, 587–595 (1985).

    Article  Google Scholar 

  24. Munro, S. & Pelham, H. Nature 317, 477–478 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Wu, C. et al. Science 238, 1247–1253 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Verjee, Z. H. M. Eur. J. Biochem. 9, 439–444 (1969).

    Article  CAS  Google Scholar 

  27. Beckwith, J. & Zipser, D. The lactose operon (Cold Spring Harbor, New York, 1970).

    Google Scholar 

  28. Wurm, F. M., Gwinn, K. A. & Kingston, R. E. Proc. natn. Acad. Sci. U.S.A. 83, 5415–5418 (1986).

    Article  ADS  Google Scholar 

  29. Holmgren, R., Livak, K., Morimoto, R., Freund, R. & Meselson, M. Cell 18, 1359–1370 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, J., Schuetz, T. & Kingston, R. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335, 372–375 (1988). https://doi.org/10.1038/335372a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335372a0

  • Springer Nature Limited

This article is cited by

Navigation