Skip to main content
Log in

Pluto's structure and composition suggest origin in the solar, not a planetary, nebula

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The mean density of the Pluto-Charon system is now accurately known at 1.99±0.09 g cm–3 (With formal errors five times smaller)1, through observations of total occultations and transits2. Even allowing Charon's density to vary between 1 and 3 g cm–3 constrains Pluto's density between 1.84 and 2.14 g cm–3. Pluto is thus very rock-rich, with a rock/(rock + H2O-ice) mass ratio of ˜0.68–0.80, much greater than those of the icy satellites Ganymede, Callisto or Titan. It is so rock-rich that spontaneous unmixing of rock and ice phases in its convecting interior is just possible, and any significant differentiation during accretion or during Charon's formation, which may have involved a large-body impact3–5, renders Pluto unstable to further melting and differentiation because the resulting multiple thermal boundary layers inhibit heat transport6. Continual loss of methane over the age of the Solar System7,8 requires a near-surface methane reservoir, and implies that non-trivial differentiation has occurred9. Pluto is probably a differentiated object whose icy mantle is entirely in the ice-I stability field; its closest structural cousin is Europa. Of four explanations for Pluto's large rock/ice ratio10—formation in the inner Solar System, volatile loss during accretion, volatile loss during the large-body impact that created Charon, and formation as a large, ice-poor11,12 outer Solar System planetesimal—we show that only the last two are feasible, and that the depletion of water ice in Pluto is so severe that both explanations may be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tholen, D. J. & Buie, M. W. Bull. Am. astr. Soc. 19, 859–860 (1987).

    ADS  Google Scholar 

  2. Tholen, D. J., Buie, M. W., Binzel, R. P. & Frueh, M. L. Science 237, 512–514 (1987).

    Article  ADS  CAS  Google Scholar 

  3. McKinnon, W. B. Nature 311, 355–358 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Burns, J. A. in Satellites (eds Burns, J. A. & Matthews, M. S.) 117–158 (University of Arizona Press, Tucson, 1986).

    Google Scholar 

  5. Peale, S. J. in Satellites (eds Burns, J. A. & Matthews, M. S.) 159–223 (University of Arizona Press, Tucson, 1986).

    Google Scholar 

  6. Mueller, S. & McKinnon, W. B. Icarus (in the press).

  7. Hunten, D. M. & Watson, A. J. Icarus 51, 665–667 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Trafton, L., Stern, S. A. & Gladstone, G. R. Icarus 74, 108–120 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Stern, S. A. Icarus (submitted).

  10. McKinnon, W. B. & Mueller, S. Lunar planet. Sci. XIX 764–765 (1988).

  11. Lewis, J. S. & Prinn, R. G. Astrophys. J. 238, 357–364 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Stevenson, D. J. in Uranus and Neptune (ed. Bergstralh, J. T.) 405–423 (NASA, Washington, 1984).

    Google Scholar 

  13. Burns, J. A. in Satellites (eds Burns, J. A. & Matthews, M. S.) 1–38 (University of Arizona Press, Tucson, 1986).

    Google Scholar 

  14. Prinn, R. G. & Fegley, B. Astrophys. J. 249, 308–317 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Nagy, B. Carbonaceous Chondrites (Elsevier. Amsterdam, 1975).

    Google Scholar 

  16. Prinn, R. G. & Fegley, B. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S. K., Pollack, J. B. & Matthews, M. S.) (University of Arizona Press, Tucson, in the press).

  17. Greenwood, H. J. in The Evolution of the Crystalline Rocks (eds Bailey, D. K. & MacDonald, R.) 187–259 (Academic Press, London, 1976).

    Google Scholar 

  18. Friedson, A. J. & Stevenson, D. J. Icarus 56, 1–14 (1983).

    Article  ADS  Google Scholar 

  19. Kirk, R. L. & Stevenson, D. J. Icarus 69, 91–134 (1987).

    Article  ADS  Google Scholar 

  20. Cruikshank, D. P. & Brown, R. H. in Satellites (eds Burns, J. A. & Matthews, M. S.) 836–873 (University of Arizona Press, Tucson, 1986).

    Google Scholar 

  21. Buie, M. C. & Fink, U. Icarus 70, 483–498 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Sykes, M. V., Cutri, R. M., Lebofsky, L. A. & Binzel, R. P. Science 237, 1336–1340 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Lunine, J. I. & Stevenson, D. J. Astrophys. J. Suppl. Ser. 58, 493–531 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Allen, M. et al. Astr. Astrophys. 187, 502–512 (1987).

    ADS  CAS  Google Scholar 

  25. Lunine, J. I. Bull. Am. astr. Soc. 19, 887 (1987).

    ADS  Google Scholar 

  26. Wedeking, K. W. & Hayes, J. M. in Advances in Organic Geochemistry 1981 (eds M. Bjorøy et al.) 546–553 (John Wiley, Chichester, 1983).

    Google Scholar 

  27. Holloway, J. R. Geology 12, 455–458 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Lupo, M. J. & Lewis, J. S. Icarus 42, 29–34 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Sussman, G. J. & Wisdom, J. Science 241, 433–437 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Ahrens, T. J. & O'Keefe, J. D. in Ices in the Solar System (eds Klinger, J., Benest, D., Dollfus, A. & Smoluchowski, R.) 631–654 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  31. Schubert, G., Spohn, T. & Reynolds, R. T. in Satellites (eds Burns, J. A. & Matthews, M. S.) 224–292 (University of Arizona Press, Tucson, 1986).

    Google Scholar 

  32. Johnson, T. V., Brown, R. H. & Pollack, J. B. J. geophys. Res. 92, 14884–14894 (1987).

    Article  ADS  CAS  Google Scholar 

  33. Stevenson, D. J., Harris, A. W. & Lunine, J. I. in Satellites (eds Burns, J. A. & Matthews, M. S.) 39–88 (University of Arizona Press, Tucson, 1986).

    Google Scholar 

  34. Weidenschilling, S. J. Icarus 46, 124–126 (1981).

    Article  ADS  Google Scholar 

  35. Farinella, P., Paolicchi, P. & Zappalá, V. Icarus 52, 409–433 (1982).

    Article  ADS  Google Scholar 

  36. Lunine, J. I., Atreya, S. K. & Pollack, J. B. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S. K., Pollack, J. B. & Matthews, M. S.) (University of Arizona Press, Tucson, in the press).

  37. McKinnon, W. B. in Ices in the Solar System (eds Klinger, J., Benest, D., Dollfus, A. & Smoluchowski, R.) 829–856 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  38. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2363–2380 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinnon, W., Mueller, S. Pluto's structure and composition suggest origin in the solar, not a planetary, nebula. Nature 335, 240–243 (1988). https://doi.org/10.1038/335240a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335240a0

  • Springer Nature Limited

This article is cited by

Navigation