Skip to main content

Advertisement

Log in

Estimation of heat and chemical fluxes from a seafloor hydrothermal vent field using radon measurements

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The circulation of seawater through newly formed ocean crust at mid-ocean ridge spreading centres is important in the oceanic heat and chemical budgets. The heat transfer in submarine hydrothermal systems accounts for ˜25% of the total global heat loss1. The transfer of mass resulting from basaltic alteration affects the geochemistry of seawater2 and is responsible for the formation of ore deposits on and beneath the seafloor3. Various geophysical techniques have been employed in efforts to determine the heat output from hydrothermal vent fields4–9; however, the magnitudes of the heat and chemical fluxes through these systems remain uncertain. Here we introduce a geochemical approach for estimating the flux from a vent field based on radon (222Rn) measurements in the overlying effluent plume. This method was applied successfully in September 1986 during a 23-day expedition to an active vent field on the 170-km Endeavour segment of the Juan de Fuca Ridge (Fig. la). We estimate the heat flux from this site to be l–5×l09 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sclater, J. G., Jaupart, C. & Galson, D. J. geophys. Res. 86, 11535–11552 (1981).

    Article  ADS  Google Scholar 

  2. Edmond, J. M. et al. Earth planet. Sci. Lett. 46, 1–18 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Hekinian, R. et al. Science 207, 1433–1444 (1980).

    Article  ADS  CAS  Google Scholar 

  4. MacDonald, K. C., Becker, K. Spiess, F. N. & Ballard, R. D. Earth planet. Sci. Lett. 48, 1–7 (1980).

    Article  ADS  Google Scholar 

  5. MacDonald, K. C. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. et al.) 27–51 (Plenum, New York, 1983).

    Book  Google Scholar 

  6. Converse, D. R., Holland, H. D. & Edmond, J. M. Earth planet. Sci. Lett. 69, 159–175 (1984).

    Article  ADS  Google Scholar 

  7. Baker, E. T. & Massoth, G. J. Earth planet. Sci. Lett. 85, 59–73 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Crane, K. C. et al. J. geophys. Res. 90, 727–744 (1985).

    Article  ADS  Google Scholar 

  9. Little, S. A., Stolzenbach, K. D. & von Herzen, R. P. J. geophys. Res. 92, 2587–2596 (1987).

    Article  ADS  Google Scholar 

  10. MERGE Group. EOS 65, 1111 (1984).

  11. Hammond, S. R. et al. EOS 65, 1111 (1984).

    Google Scholar 

  12. Lupton, J., Delaney, J., Johnson, H. P. & Tivey, M. EOS 65, 975 (1984); 66, 929 (1985).

    Google Scholar 

  13. Lupton, J., Delaney, J., Johnson, H. P. & Tivey, M. Nature 315, 621–623 (1985).

    Article  ADS  Google Scholar 

  14. Kadko, D. & Lupton, J. E. EOS 65, 974 (1984).

    Google Scholar 

  15. Speer, K. G. thesis, WHOI-MIT (1988).

  16. Dymond, J., Cobler, R., Gordon, L., Biscaye, P. & Mathieu, G. Earth planet. Sci. Lett. 694, 417–429 (1983).

    Article  ADS  Google Scholar 

  17. Kadko, D. & Moore, W. Geochim. cosmochim. Acta 52, 659–668 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, N., Lupton, J., Kadko, D. et al. Estimation of heat and chemical fluxes from a seafloor hydrothermal vent field using radon measurements. Nature 334, 604–607 (1988). https://doi.org/10.1038/334604a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334604a0

  • Springer Nature Limited

This article is cited by

Navigation