Skip to main content
Log in

The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The glucocorticoid receptor enhances or represses transcription by binding to specific DNA sequences termed glucocorticoid response elements, or GREs1–5. Studies of cloned glucocorticoid receptors6–8 reveal that the protein is organized as functional domains, in an arrangement that appears to be common among members of the steroid receptor family9. A segment near the centre of the gene specifies DNA binding activity in vitro and contains two sequence motifs similar to 'zinc fingers' found in Xenopus transcription factor III A (TFIIIA)10. Such sequence motifs have been identified in nucleic acid binding proteins from a wide range of organisms11–13. Steroid receptor protein fingers are proposed to bind zinc through two pairs of conserved cysteine residues7,14,15.We report here that a protein of relative molecular mass 19,000 (Mr = 19K) encompassing the DNA-binding domain of the glucocorticoid receptor that has been overexpressed in Escherichia coli and purified to homogeneity reversibly ligates two Zn(II) or Cd(II) ions. We show that metal ions are required for specific DNA binding and proper folding. Using EXAFS (extended X-ray absorption fine structure) and visible light spectroscopies, we find that each Zn atom is coordinated in a tetrahedral arrangement by four cysteines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto, K. R. A. Rev. Genet. 19, 209–252 (1985).

    Article  CAS  Google Scholar 

  2. Payvar, F. et al. Cell 35, 381–392 (1983).

    Article  CAS  Google Scholar 

  3. Schediereit, C., Geisse, S., Westphal, H. M. & Beato, M. Nature 304, 749–752 (1983).

    Article  ADS  Google Scholar 

  4. Chandler, V. L., Maler, B. A. & Yamamoto, K. R. Cell 33, 489–499 (1983).

    Article  CAS  Google Scholar 

  5. Sakai, D. D. et al. Genes Dev. (in the press).

  6. Hollenberg, S. M. et al. Nature 318, 635–641 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Miesfeld, R. et al. Cell 46, 389–399 (1986).

    Article  CAS  Google Scholar 

  8. Danielsen, M., Northrop, J. P. & Ringold, G. M. EMBO J. 5, 2513–2522 (1986).

    Article  CAS  Google Scholar 

  9. Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. Nature 330, 444–450 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Miller, J., McLachlan, A. D. & Klug, A. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  11. Johnston, M. Nature 328, 353–355 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Kadonaga, J. T., Carner, K. R., Masiarz, F. R. & Tjian, R. Cell 51, 1079–1090 (1987).

    Article  CAS  Google Scholar 

  13. Giedroc, D. P. et al. Proc. natn. Acad. Sci. U.S.A. 83, 8452–8456 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Weinberger, C., Hollenberg, S. M. Rosenfeld, M. G. & Evans, R. M. Nature 318, 670–672 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Jeltcsh, J. M. et al. Proc. natn. Acad. Sci. U.S.A. 83, 5424–5428 (1986).

    Article  ADS  Google Scholar 

  16. Studier, F. W. & Moffatt, N. J. Molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  17. Swenson, D., Baenzinger, N. C. & Coucouvanis, D. J. Am. chem. Soc. 100, 1932–1934 (1978).

    Article  CAS  Google Scholar 

  18. Diakun, G. P., Fairall, C. & Klug, A. Nature 324, 698–699 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Holah, D. G. & Coucouvanis, D. J. Amb. chem. Soc. 97, 6917–6918 (1975).

    Article  CAS  Google Scholar 

  20. McMillin, D. R., Holerda, R. A. & Gray, H. B. Proc. natn. Acad. Sci. U.S.A. 71, 1339–1343 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Drum, D. W. & Vallee, B. L. Biochem. biophys. Res. Commun. 41, 33–39 (1970).

    Article  CAS  Google Scholar 

  22. Jones, K. A., Yamamoto, K. R. & Tjian, R. Cell 42, 559–572 (1985).

    Article  CAS  Google Scholar 

  23. Fried, M. G. & Crothers, D. M. Nucl. Acids Res. 5, 6505–6525 (1981).

    Article  Google Scholar 

  24. Stern, E. & Healds, S, S., Rev. sci. Instrum. 50, 1579–1582 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Stephan, D. & Hitchcock, A. Inorg. Chim. Act. 136, 1–5 (1987).

    Article  Google Scholar 

  26. Hollenberg, S. M., Gigure, V., Segui, P. & Evans, R. M. Cell 49, 38–46 (1987).

    Article  Google Scholar 

  27. Riordan, J. F. & Vallee, B. L. in Meth. enzym. Vol. 25 (eds Hirs, C. H. W. & Timasteff, S. H.) 449–456 (Academic, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, L., Luisi, B., Korszun, Z. et al. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature 334, 543–546 (1988). https://doi.org/10.1038/334543a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334543a0

  • Springer Nature Limited

This article is cited by

Navigation