Skip to main content
Log in

Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

L1 sequences are a human-specific family of long, interspersed, repetitive elements, present as ∼105 copies dispersed throughout the genome1. The full-length L1 sequence is 6.1 kilobases, but the majority of L1 elements are truncated at the 5' end, resulting in a fivefold higher copy number of 3' sequences1. The nucleotide sequence of L1 elements includes an A-rich 3' end and two long open reading frames (orf-1 and orf-2), the second of which encodes a potential polypeptide having sequence homology with the reverse transcriptases1–4. This structure suggests that L1 elements represent a class of non-viral retrotransposons1,2. A number of L1 complementary DNAs, including a nearly full-length element, have been isolated from an undifferentiated teratocarcinoma cell line5. We now report insertions of L1 elements into exon 14 of the factor VIII gene in two of 240 unrelated patients with haemophilia A. Both of these insertions (3.8 and 2.3 kilobases respectively) contain 3' portions of the L1 sequence, including the poly (A) tract, and create target site duplications of at least 12 and 13 nucleotides of the factor VIII gene. In addition, their 3'-trailer sequences following orf-2 are nearly identical to the consensus sequence of L1 cDNAs (ref. 6). These results indicate that certain L1 sequences in man can be dispersed, presumably by an RNA intermediate, and cause disease by insertional mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fanning, T. & Singer, M. F. Biochem. biophys. Acta (in the press).

  2. Scott, A. F. et al. Genomics 1, 113–125 (1987).

    Article  CAS  Google Scholar 

  3. Hattori, M. et al. Nature 321, 625–628 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Sakaki, Y. et al. Cold Spring Harb. Symp. quant. Biol. 51, 465–469 (1986).

    Article  CAS  Google Scholar 

  5. Skowronski, J. & Singer, M. F. Proc. natn. Acad. Sci. U.S.A. 82, 6050–6054 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Skowronski, J. & Singer, M. F. Cold Spring Harb. Symp. quant. Biol. 51, 457–464 (1986).

    Article  CAS  Google Scholar 

  7. Gitschier, J. et al. Nature 312, 326–330 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Toole, J. J. et al. Nature 312, 342–347 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Gitschier, J. et al. Nature 315, 427–430 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Youssoufian, H. et al. Nature 324, 380–382 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Antonarakis, S. E., Youssoufian, H. & Kazazian, H. H. Jr Molec. biol. Med. 4, 81–94 (1987).

    CAS  PubMed  Google Scholar 

  12. Maniatis, T., Fritsch, E. G. & Sambrook, J. Molecular Cloning (Cold Spring Harbor, 1982).

    Google Scholar 

  13. Sanger, K., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Mager, D. L., Henthorn, P. S. & Smithies, O. Nucleic Acids Res. 13, 6559–6575 (1985).

    Article  CAS  Google Scholar 

  15. DiNocera, P. P. & Casari, G. Proc. natn. Acad. Sci. U.S.A. 84, 5843–5847 (1987).

    Article  ADS  CAS  Google Scholar 

  16. DiNocera, P. P., Digan, M. E. & Dawid, I. B. J. molec. Biol. 168, 715–727 (1983).

    Article  CAS  Google Scholar 

  17. Katzir, N. et al. Proc. natn. Acad. Sci. U.S.A. 82, 1054–1058 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Loeb, D. D. et al. Molec. cell. Biol. 6, 168–182 (1986).

    Article  CAS  Google Scholar 

  19. Soares, M. B., Schon, E. & Efstratiadis, A. J. molec. Evol. 22, 117–133 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Adams, J. W. et al. Nucleic Acids Res. 8, 6113–6128 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazazian, H., Wong, C., Youssoufian, H. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988). https://doi.org/10.1038/332164a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332164a0

  • Springer Nature Limited

This article is cited by

Navigation