Skip to main content
Log in

Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The biological requirement of the trace element selenium was recognized 40 years ago1. Selenium is incorporated into several enzymes and transfer RNA species of both prokaryotic and eukaryotic origin2. In enzymes which contain a selenopolypeptide, selenium is present as covalently bound selenocysteine which participates in the catalytic reaction3. Sequence analysis of the genes coding for two selenoproteins, formate dehydrogenase H from Escherichia coli4 and glutathione peroxidase from mouse5 and man6, demonstrated that an inframe UGA opal nonsense codon directs the incorporation of selenocysteine. In the case of formate dehydrogenase incorporation occurs cotranslationally7. Recently, we identified four genes whose products are required for selenocysteine incorporation in E. coli8 . We report here that one of these genes codes for a tRNA species with unique properties. It possesses an anticodon complementary to UGA and deviates in several positions from sequences, until now, considered invariant in all tRNA species9'10. This tRNA is aminoacylated with L-serine by the seryl-tRNA ligase which also charges cognate tRNASer. Selenocysteine, therefore, is synthesized from a serine residue bound to a natural suppressor tRNA which recognizes UGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinsent, J. Biochem. J. 57, 10–16 (1954).

    Article  CAS  Google Scholar 

  2. Stadtman, T. C. A. Rev. Biochem. 49, 93–110 (1980).

    Article  CAS  Google Scholar 

  3. Condell, R. A. & Tappel, A. L. Biochim. biophys. Acta 709, 304–309 (1982).

    Article  CAS  Google Scholar 

  4. Zinoni, F., Birkman, A., Stadtman, T. C. & Böck, A. Proc. natn. Acad. Sci. U.S.A. 83, 4650–4654 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Chambers, I. et al. EMBO J. 5, 1221–1227 (1986).

    Article  CAS  Google Scholar 

  6. Sukenaga, Y., Ishida, K., Takeda, T. & Takagi, K. Nucleic Acids Res. 15, 7178 (1987).

    Article  CAS  Google Scholar 

  7. Zinoni, F., Birkmann, A., Leinfelder, W. & Böck, A. Proc. natn. Acad. Sci. U.S.A. 84, 3156–3160 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Leinfelder, W. et al. J. Bact. (in the press).

  9. Sprinzl, M., Moll, J., Meissner, F. & Hartmann, T. Nucleic Acids Res. 13, r1–r49 (1985).

    Article  Google Scholar 

  10. Sprinzl, M., Vorderwülbecke, T. & Hartmann, T. Nucleic Acids Res. 13, r51–rl04 (1985).

    Article  Google Scholar 

  11. Cox, J. C., Edwards, E. S. & DeMoss, J. A. J. Bact. 145, 1317–1324 (1981).

    CAS  PubMed  Google Scholar 

  12. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  13. Gray, C. P., Sommer, R., Beck, E. & Schaller, H. Proc. natn. Acad. Sci. U.S.A. 75, 50–53 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Ryan, M. J., Belagaje, R., Brown, E. L., Fritz, H.-J. & Khorana, H. G. J. molec. Biol. 254, 10803–10810 (1979).

    CAS  Google Scholar 

  15. Prentki, P. & Krisch, H. M. Gene 29, 303–313 (1984).

    Article  CAS  Google Scholar 

  16. Pouwels, P. H., Enger-Valk, B. E. & Brammar, W. J. Cloning vectors (Elsevier, Amsterdam, 1986).

    Google Scholar 

  17. Raftery, L. A. & Yarus, M. EMBO J. 6, 1499–1506 (1987).

    Article  CAS  Google Scholar 

  18. Low, B., Gates, F., Goldstein, T. & Söll, D. J. Bact. 108, 742–750 (1971).

    CAS  PubMed  Google Scholar 

  19. Hatfield, D., Diamond, A. & Dudock, B. Proc. natn. Acad. Sci. U.S.A. 79, 6215–6219 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Hatfield, D. Trends biochem. Sci. 10, 201–204 (1985).

    Article  CAS  Google Scholar 

  21. Mizutani, T. & Tachibana, Y. FEBS Lett. 207, 162–166 (1986).

    Article  CAS  Google Scholar 

  22. Sunde, R. A. & Evenson, J. K. J. biol. Chem. 262, 933–937 (1987).

    CAS  PubMed  Google Scholar 

  23. Buckel, P., Piepersberg, W. & Böck, A. Molec. gen. Genet. 149, 51–61 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinfelder, W., Zehelein, E., MandrandBerthelot, M. et al. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331, 723–725 (1988). https://doi.org/10.1038/331723a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331723a0

  • Springer Nature Limited

This article is cited by

Navigation