Skip to main content
Log in

EDRF coordinates the behaviour of vascular resistance vessels

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Constriction of vascular smooth muscle in response to the stimulus of raised intravascular pressure—the myogenic response1,2— represents a positive feedback mechanism which, if unopposed, could theoretically lead to instability in the intact circulation3,4. Dilation in response to increased intraluminal flow would provide an opposing feedback mechanism which could confer overall stability4. Flow-dependent dilation in conduit vessels5–7 is mediated by endothelium-derived relaxing factor (EDRF)8–14, but the relationship between flow and EDRF activity has not been studied in resistance vessels in situ. We here demonstrate that EDRF can coordinate the aggregate hydrodynamic properties of an intact network. Under control conditions, EDRF maintains a fourth-power relationship between diameter and flow so that the pressure gradient in each vessel asymptotically approaches a constant value at high flow rates. Basal EDRF release may also maintain a similar spatial distribution of flow at different flow rates, even under conditions of moderate pharmacological constriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayliss, W. M. J. Physiol., Lond. 28, 220–231 (1902).

    Article  CAS  Google Scholar 

  2. Johnson, P. C. in Handbook of Physiology Vol II Vascular Smooth Muscle (eds Bohr, D. F., Somlyo, A. P. & Sparks, H. S.) 409–442 (Am. Physiol. Soc., Bethesda, Maryland, 1980).

    Google Scholar 

  3. Folkow, B. Circ. Res. 15, Suppl. 1, 279–287 (1964).

    Google Scholar 

  4. Guyton, A. C., cited in Koch A. R. Circ. Res. 15, Suppl. 1, 269–279 (1964).

    Google Scholar 

  5. Schretzenmayr, A. Pflüeger's Arch. ges. Physiol. 232, 743–748 (1933).

    Article  Google Scholar 

  6. Hilton, S. M. J. Physiol., Lond. 149, 93–111 (1959).

    Article  CAS  Google Scholar 

  7. Gerova, M. et al. Basic Res. Cardiol. 76, 503–507 (1981).

    Article  CAS  Google Scholar 

  8. Smiesko, V., Kozik, J. & Dolezel, S. Blood Vessels 22, 247–251 (1985).

    CAS  PubMed  Google Scholar 

  9. Holtz, J., Giesler, M. & Bassenge, E. Z. Kardiol. 72, Suppl. 3, 98–106 (1983).

    CAS  PubMed  Google Scholar 

  10. Holtz, J., Forstermann, U., Pohl, U., Giesler, M. & Bassenge, E. J. Cardiovasc. Pharmac. 6, 1161–1169 (1984).

    Article  CAS  Google Scholar 

  11. Rubanyi, G. M., Romero, J. C. & Vanhoutte, P. M. Am. J. Physiol. 250, H1145–H1149 (1986).

    Article  CAS  Google Scholar 

  12. Pohl, U., Busse, R., Kuon, E. & Bassenge, E. J. appl. Cardiol. 1, 215–235 (1986).

    CAS  Google Scholar 

  13. Kaiser, L., Hull, S. S. & Sparks, H. V. Am. J. Physiol. 250, H974–H981 (1986).

    CAS  PubMed  Google Scholar 

  14. Khayutin, V. M. et al. Acta physiol. Hungarica 68, 241–251 (1986).

    CAS  Google Scholar 

  15. Furchgott, R. F. Circ. Res. 53, 557–573 (1983).

    Article  CAS  Google Scholar 

  16. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C. & Henderson A. H. Nature 308, 645–647 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Griffith, T. M., Henderson, A. H., Hughes Edwards, D. & Lewis, M. J. J. Physiol., Lond. 351, 13–24 (1984).

    Article  CAS  Google Scholar 

  18. Martin, W., Furchgott, R., Villani, G. M. & Jothianandan, D. J. Pharm. exp. Ther. 237, 529–538 (1986).

    CAS  Google Scholar 

  19. Collins, P. Chappell, S. P., Griffith, T. M., Lewis, M. J. & Henderson, A. H. J. Cardiovasc. Pharmac. 8, 1158–1162 (1986).

    Article  CAS  Google Scholar 

  20. Davies, R. Ll., Flores, N. A. & Evans, K. T. Br. J. Radiol. 59, 273–276 (1986).

    Article  CAS  Google Scholar 

  21. Palmer, R. M. J., Ferrige, A. G. & Moncada, S. Nature. 327, 524–526 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Gibson, Q. H. & Roughton, F. J. W. J. Physiol., Lond. 136, 507–526 (1957).

    Article  CAS  Google Scholar 

  23. Martin, W., Villani, G. M., Jothianandan, D. & Furchgott, R. F. J. Pharm. exp. Ther. 232, 708–716 (1985).

    CAS  Google Scholar 

  24. Edwards, D. H., Griffith, T. M., Ryley, H. C. & Henderson, A. H. Cardiovasc. Res. 20, 549–556 (1986).

    Article  CAS  Google Scholar 

  25. Zweifach, B. W. Circ. Res. 41, 380–390 (1977).

    Article  CAS  Google Scholar 

  26. Mayrovitz, H. N. & Roy, J. Am. J. Physiol. 245, H1031–H1038 (1983).

    CAS  PubMed  Google Scholar 

  27. Colquhoun, D. in Lectures on Biostatistics 259–272 (Clarendon Press, Oxford, 1971).

    MATH  Google Scholar 

  28. Gore, R. W. Am. J. Physiol. 222, 82–91 (1972).

    CAS  PubMed  Google Scholar 

  29. Popel, A. S. J. appl. Mech. 47, 247–253 (1980).

    Article  CAS  Google Scholar 

  30. Gore, R. W. Circ. Res. 34, 581–591 (1974).

    Article  ADS  CAS  Google Scholar 

  31. Zweifach, B. W. Circ. Res. 34, 843–857 (1974).

    CAS  PubMed  Google Scholar 

  32. Schmid-Shönbein, H., Fischer, T., Driessen, G. & Rieger, H. in Quantatative Cardiovascular Studies (eds Hwang, N H C, Gross, D. R. & Patel, D. J) 353–417 (University Park Press, Baltimore, 1979).

    Google Scholar 

  33. Murray, C. D. Proc. natn. Acad. Sci. U.S.A. 12, 207–214 (1926).

    Article  ADS  CAS  Google Scholar 

  34. Kamiya, A. & Togawa, T. Am. J. Physiol. 239, H14–H21 (1980).

    CAS  PubMed  Google Scholar 

  35. Colquhoun, D. in Lectures on Biostatistics 200–204 (Clarendon Press, Oxford, 1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, T., Edwards, D., Davies, R. et al. EDRF coordinates the behaviour of vascular resistance vessels. Nature 329, 442–445 (1987). https://doi.org/10.1038/329442a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329442a0

  • Springer Nature Limited

This article is cited by

Navigation