Skip to main content
Log in

A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The human Lesch–Nyhan syndrome is a rare neurological and behavioural disorder, affecting only males, which is caused by an inherited deficiency in the level of activity of the purine salvage enzyme hypoxanthine-guanosine phosphoribosyl transferase (HPRT)1–3. How the resulting alterations in purine metabolism lead to the severe symptoms characteristic of Lesch–Nyhan patients is still not understood3,4. No mutations at the Hprt locus leading to loss of activity have been described in laboratory animals. To derive an animal model for the Lesch–Nyhan syndrome, we have used cultured mouse embryonic stem cells5, mutagenized by retroviral insertion and selected for loss of HPRT activity, to construct chimaeric mice6,7. Two clonal lines carrying different mutant Hprt alleles have given rise to germ cells in chimaeras, allowing the derivation of strains of mutant mice having the same biochemical defect as Lesch–Nyhan patients. Male mice carrying the mutant alleles are viable and analysis of their cells shows a total lack of HPRT activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lesch, M. & Nyhan, W. L. Am. J. Med. 36, 561–570 (1964).

    Article  CAS  Google Scholar 

  2. Seegmiller, J. E., Rosenbloom, F. M. & Kelley, W. N. Science 155, 1682–1684 (1967).

    Article  ADS  CAS  Google Scholar 

  3. Kelley, W. N. & Wyngaarden, J. B. in The Metabolic Basis of Inherited Diseases 5th edn (eds Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S., Goldstein, J. L. & Brown, M. S.) 1115–1143 (McGraw-Hill, New York, 1983).

    Google Scholar 

  4. Stout, J. T. & Caskey, C. T. A. Rev. Genet. 19, 127–148 (1985).

    Article  CAS  Google Scholar 

  5. Evans, M. J. & Kaufman, M. H. Nature 292, 154–156 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Nature 309, 255–256 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Nature 323, 445–448 (1986).

    Article  ADS  CAS  Google Scholar 

  8. King, W., Patel, M. D., Lobel, L. I., Goff, S. P. & Nguyen-Huu, C. Science 228, 554–558 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Hooper, M. L. Mammalian Cell Genetics (Wiley, New York, 1985).

    Google Scholar 

  10. Littlefield, J. W. Science 145, 709–710 (1964).

    Article  ADS  CAS  Google Scholar 

  11. Melton, D. W., Konecki, D. S., Brennand, J. & Caskey, C. T. Proc. natn. Acad. Sci. U.S.A. 81, 2147–2151 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Nesbitt, M. N. & Franke, U. Chromosoma 41, 145–158 (1973).

    Article  CAS  Google Scholar 

  13. Burgoyne, P. S. & Baker, T. G. J. Reprod. Fert. 61, 207–212 (1981).

    Article  CAS  Google Scholar 

  14. Rosenbloom, F. M., Kelly, W. N., Henderson, J. F. & Seegmiller, J. E. Lancet ii, 305–306 (1967).

    Article  Google Scholar 

  15. Migeon, B. R., Der Kaloustian, V. K., Nyhan, W. L., Young, W. J. & Childs, B. Science 160, 425–427 (1968).

    Article  ADS  CAS  Google Scholar 

  16. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. Nature 326, 292–295 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Dewey, M. J., Martin, D. W. Jr, Martin, G. R. & Mintz, B. Proc. natn. Acad. Sci. U.S.A. 74, 5564–5568 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Migeon, B. R. Biochem. Genet. 4, 377–383 (1970).

    Article  CAS  Google Scholar 

  19. Fujimoto, W-Y. & Seegmiller, J. E. Proc. natn. Acad. Sci. U.S.A. 65, 577–584 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Willis, R. C. et al. J. biol. Chem. 259, 7842–7849 (1984).

    CAS  PubMed  Google Scholar 

  21. Miller, A. D., Eckner, R. J., Jolly, D. J., Friedmann, T. & Verma, I. M. Science 225, 630–632 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Patel, P. I. & Caskey, C. T. BioEssays 2, 4–8 (1986).

    Article  Google Scholar 

  23. Thomas, K. R., Folger, K. R. & Cappechi, M. R. Cell 44, 419–428 (1986).

    Article  CAS  Google Scholar 

  24. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Nature 317, 230–234 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Mann, R., Mulligan, R. C. & Baltimore, D. Cell 33, 153–157 (1983).

    Article  CAS  Google Scholar 

  26. Stocking, C., Kollek, R., Bergholz, U. & Ostertag, W. Proc. natn. Acad. Sci. U.S.A. 82, 5746–5750 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Konecki, D. S., Brennand, J., Fuscoe, J. C., Caskey, C. T. & Chinault, A. C. Nucleic Acids Res. 10, 6763–6775 (1982).

    Article  CAS  Google Scholar 

  28. Hogan, B., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo—a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuehn, M., Bradley, A., Robertson, E. et al. A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298 (1987). https://doi.org/10.1038/326295a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326295a0

  • Springer Nature Limited

This article is cited by

Navigation