Skip to main content
Log in

Unusual intron in the immunoglobulin domain of the newly isolated murine CD4 (L3T4) gene

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The T-cell surface glycoprotein, CD4, is expressed predominantly on helper T cells and is thought to play a major role in cell–cell interactions1–5. Monoclonal antibodies against CD4 have been shown to block numerous T-cell functions1,3,4; moreover, recent results suggest that the CD4 molecule may be involved in transmembrane signal transduction6,7. The human CD4 glycoprotein has also been shown to form at least part of the receptor for the AIDS virus, HIV-1 (refs 8–10). Elucidation of the functions of CD4 will be facilitated by the ability to manipulate the protein by genetic means. Because the mouse system is well suited for a variety of functional studies, we have isolated, sequenced and expressed cDNA clones encoding the murine CD4 (L3T4) glycoprotein. Comparison of the mouse and human CD4 sequences reveals striking evolutionary conservation of the cytoplasmic domain, suggesting that this region is essential for CD4 function. In addition, both the human and mouse CD4 gene contain a large intron in the coding region of the V-like domain. As no other members of the immunoglobulin gene superf amily have been shown to contain similarly placed introns, this finding may have important implications regarding the evolution of this gene family in particular and of introns in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb, M., Mason, D. W. & Williams, A. F. Nature 282, 841–843 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Reinherz, E. L. & Schlossman, S. F. Cell 19, 821–827 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Krensky, A. M. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2365–2369 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Swain, S. L., Dialynas, D., Fitch, F. W. & English, M. J. Immun. 132, 1118–1123 (1984).

    CAS  PubMed  Google Scholar 

  5. Marrack, P. et al. J. exp. Med. 158, 1077–1091 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Wassmer, P., Chan, C., Logdberg, L. & Shevach, E. M. J. Immun. 135, 2237–2242 (1985).

    CAS  PubMed  Google Scholar 

  7. Bank, I. & Chess, L. J. exp. Med. 162, 1294–1303 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Dalgleish, A. et al. Nature 312, 763–767 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Klatzmann, D. et al. Nature 312, 767–768 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. McDougal, J. S. et al. Science 231, 382–385 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hiraki, D. D. et al. J. Immun. 136, 4291–4296 (1986).

    CAS  PubMed  Google Scholar 

  12. Maddon, P. J. et al. Cell 42, 93–104 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Littman, D. R. et al. Cell 40, 237–246 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Classon, B. J., Tsagaratos, J., McKenzie, I. F. C. & Walker, I. D. Proc. natn. Acad. Sci. U.S.A. 83, 4499–4503 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Hood, L., Kronenberg, M. & Hunkapiller, T. Cell 40, 225–229 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Doolittle, R. Nature 272, 581–582 (1978).

    Article  ADS  Google Scholar 

  17. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Marchionni, M. & Gilbert, W. Cell 46, 133–141 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. McKnight, G. L., O'Hara, P. J. & Parker, M. L. Cell 46, 143–147 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Amzel, L. M. & Poljak, R. J. A. Rev. Immun. 48, 961–997 (1979).

    CAS  Google Scholar 

  21. Go, M. Proc. natn. Acad. Sci. U.S.A. 80, 1964–1968 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Williams, A. F. Immun. Today 5, 219–221.

  23. Swain, S. L. Proc. natn. Acad. Sci. U.S.A. 78, 7101–7105 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Greenstein, J. L., Kappler, J., Marrack, P., & Burakoff, S. J. J. exp. Med. 159, 1213–1224 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Biddison, W. E., Rao, P. E., Talle, M. A., Goldstein, G. & Shaw, S. J. J. exp. Med. 159, 783–797 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Classon, B. J. et al. Immunogenetics 23, 129–132.

  28. Altenburger, W., Steinmetz, M. & Zachau, H. G. Nature 287, 603–607 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Chien, Y. et al. Nature 312, 31–35 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Maniatis, T. et al. Cell 15, 687–701 (1978).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Littman, D., Gettner, S. Unusual intron in the immunoglobulin domain of the newly isolated murine CD4 (L3T4) gene. Nature 325, 453–455 (1987). https://doi.org/10.1038/325453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325453a0

  • Springer Nature Limited

This article is cited by

Navigation