Skip to main content
Log in

Digital image processing of intracellular pH in gastric oxyntic and chief cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Cytosolic pH (pHi) is a critically regulated determinant of intracellular function. Several mechanisms for pHi regulation in different tissues have been found, such as direct proton pumping1,2, Na/H exchange3, Cl/HCO3 exchange4, NaHCO3 cotransport5, and Na/H/Cl/HCO3 obligatorily linked6,7. All these studies have used either single cells or cell populations assumed to be behaving homogeneously. Most tissues consist of more than one cell type, so it would be desirable to examinepHi regulation simultaneously in many identified individual cells, particularly in epithelia where disaggregation and purification of isolated cells destroys the normal distinction between luminal and serosal environments. We have used a pH-sensitive fluorescent dye, BCECF (2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein) and digital image processing to study pHi regulation simultaneously in the oxyntic cells (OC) and chief cells (CC) of gastric glands isolated from rabbit stomach. CCs become markedly more acidic upon removal of external Na (Na0), but pHi is restored rapidly on return to normal Na0, with or without Cl. Oxyntic cell pHi is much less affected by Na0. Conversely, OCs become strongly more alkaline on removal of external Cl (Cl0),pHibeing restored when Cl0 is replaced with or without Na, whereas CCs are relatively insensitive to C10. Therefore, Na/H exchange is dominant over Cl/HCO3 exchange in CCs, but in the neighbouring OCs, C1/HCO3outweighs the Na/H mechanism, a heterogeneity that correlates with the functions of the two cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinmetz, P. A. & Anderson, O. S. J. Memb. Biol. 65, 155–174 (1982).

    Article  CAS  Google Scholar 

  2. Forte, J. G. & Machen, T. E. in Physiology of Membrane Disorders 2nd edn (eds Andreoli, T. E., Hoffman, J. F., Fanestil, D. D. & Schultz, S. G.) 535–558 (Plenum, New York, 1986).

    Book  Google Scholar 

  3. Grinstein, S. & Rothstein, A. J. Memb. Biol. 90, 1–12 (1986).

    Article  CAS  Google Scholar 

  4. Cabantchik, Z. I., Knauf, P. A. & Rothstein, A. Biochim. biophys. Acta. 515, 239–302 (1978).

    Article  CAS  Google Scholar 

  5. Boron, W. F. & Boulpaep, E. L. J. gen. Physiol. 81, 53–94 (1983).

    Article  CAS  Google Scholar 

  6. Thomas, R. C. J. Physiol., Lond. 273, 317–338 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Boron, W. F. & Russell, J. M. J. gen. Physiol. 81, 373–399 (1983).

    Article  CAS  Google Scholar 

  8. Keith, C. H. Maxfield, F. R. & Shelanski, M. L. Proc. natn. Acad. Sci. U.S.A. 82, 800–804 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Keith, C. H., Rajiv, R., Maxfield, F. R., Bajer, A & Shelanski, M. L. Nature 316, 348–350 (1985).

    Article  Google Scholar 

  10. Peonie, M., Alderton, J., Steinhardt, R. & Tsien, R. Science 233, 886–888 (1986).

    Article  ADS  Google Scholar 

  11. Sawyer, D. W., Sullivan, J. A. & Mandell, G. L. Science 230, 663–666 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Heiple, J. M. & Taylor, D. L. J. Cell Biol. 86, 885–890 (1980).

    Article  CAS  Google Scholar 

  13. McNeil, P. L., Tanasugarn, L., Meigs, J. B. & Taylor, D. L. J. Cell. Biol. 97, 692–702 (1983).

    Article  CAS  Google Scholar 

  14. Tanasugarn, L., McNeil, P., Reynolds, G. T. & Taylor, D. L. J. Cell Biol. 98, 717–724 (1984).

    Article  CAS  Google Scholar 

  15. Slavik, J. FEBS Lett. 156, 227–230 (1983).

    Article  CAS  Google Scholar 

  16. Paradiso, A. M., Tsien, R. Y., Demarest, J. R. & Machen, T. E. Am. J. Physiol. (submitted).

  17. Muallem, S., Burnham, C., Blissard, D., Berglindh, T. & Sachs, G. J. biol. Chem. 260, 6641–6653 (1985).

    CAS  PubMed  Google Scholar 

  18. Paradiso, A. M., Negulescu, P. A. & Machen, T. E. Am. J. Physiol. 250, G524–G534 (1986).

    CAS  PubMed  Google Scholar 

  19. Rink, T. J., Tsien, R. Y. & Pozzan, T. J. Cell Biol. 95, 189–196 (1982).

    Article  CAS  Google Scholar 

  20. Grinstein, S., Cohen, S. & Rothstein, A. J. gen. Physiol. 830, 341–369 (1984).

    Article  Google Scholar 

  21. Alpern, R. J. J. gen. Physiol. 84, 613–636 (1985).

    Article  Google Scholar 

  22. Wolosin, J. M. & Forte, J. G. Am. J. Physiol. 246, C537–C547 (1984).

    Article  CAS  Google Scholar 

  23. Cuppoletti, J. & Sachs, G. J. biol. Chem. 259, 14952–14959 (1984).

    CAS  PubMed  Google Scholar 

  24. Davies, R. E. Biol. Rev. 26, 87–120 (1951).

    Article  CAS  Google Scholar 

  25. Paradiso, A. M., Tsien, R. Y. & Machen, T. E. Proc. natn. Acad. Sci. U.S.A. 81, 7436–7440 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Tsien, R. Y., Rink, T. J. & Poenie, M. Cell Calcium 6, 145–157 (1985).

    Article  CAS  Google Scholar 

  27. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradiso, A., Tsien, R. & Machen, T. Digital image processing of intracellular pH in gastric oxyntic and chief cells. Nature 325, 447–450 (1987). https://doi.org/10.1038/325447a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325447a0

  • Springer Nature Limited

This article is cited by

Navigation