Skip to main content
Log in

Geometry, conditions and timing of off-axis hydrothermal metamorphism and ore-deposition in the Solea graben

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The recent discovery of fossil spreading axes along the northern margin of the Troodos ophiolite1 provides a unique opportunity to compare a fossil seawater-hydrothermal system with systems of modern oceanic spreading centres2–6. Whereas previous accounts of ophiolite hydrothermal systems7–13 including Troodos14–16have elucidated many aspects of sea floor hydrothermal metamorphism, earlier workers have not placed ophiolite hydrothermal features within any specific spreading-centre structural framework. Most ophiolites exhibit complex histories of post-accretion deformation that mask or obliterate early structures related to seafloor spreading. The Troodos ophiolite is apparently still in the process of being 'emplaced'17 and most structural elements at Troodos appear to have originated beneath a Cretaceous sea floor1. We have discovered an extensive area of intense seawater-hydrothermal alteration within the Sheeted Dyke Complex of the Solea graben (Fig. 1). The metamorphic petrology and oxygen-isotope geochemistry of >100 dyke samples from this graben reveal the size and three-dimensional geometry of the hydrothermal system and yield estimates of temperature, salinity, oxygen-isotope composition and recharge-discharge geometry for fluids that transported the constituents of massive sulfide orebodies. Geometric discordance between the trends of the hydrothermally altered area and of earlier, seafloor spreading structures compels us to consider a post-spreading, off-axis origin for the orebodies of the Solea graben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varga, R. J. & Moores, E. M. Geology 13, 846–850 (1985).

    Article  ADS  Google Scholar 

  2. Haymon, R. M. & MacDonald, K. C. Am. Scient. 73, 441–449 (1985).

    ADS  Google Scholar 

  3. Hekinian, R. et al. Science 219, 1321–1324 (1983).

    Article  ADS  CAS  Google Scholar 

  4. MacDonald, K. C. A. Rev. Earth planet. Sci. Lett. 10, 155–190 (1982).

    Article  ADS  Google Scholar 

  5. Normark, W. R. et al. Geology 11, 158–163 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Spiess, F. N. et al. Science 207, 1421–1433 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Alabaster, T. & Pearce, J. A. Econ. Geol. 80, 1–16 (1985).

    Article  CAS  Google Scholar 

  8. Cocker, J. D. et al. Earth planet. Sci. Lett. 61, 112–122 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Coish, R. A. Contr. Miner. Petr. 60, 255–270 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Elthon, D. & Stern, C. Geology 6, 464–468 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Geary, E. E. & Kay, R. W. in Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2, 139–156 (Am. Geophys. Union) Geophysical Monograph Series 27 (1982).

    Google Scholar 

  12. Gregory, R. T. & Taylor, H. P. Jr J. geophys. Res. 86, 2737–2755 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Schiffman, P. et al. Earth planet. Sci. Lett. 70, 207–220 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Gass, I. G. & Smewing, J. D. Nature 242, 26–29 (1973).

    Article  ADS  Google Scholar 

  15. Heaton, T. H. E. & Sheppard, S. M. F. in Volcanic Processes and Ore Genesis, 42–57 (Geological Society of London, 1966).

    Google Scholar 

  16. Spooner, E. T. C. et al. Contr. Miner. Petr. 47, 41–62 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Moores, E. M. et al. Geology 12, 500–503 (1984).

    Article  ADS  Google Scholar 

  18. Spooner, E. T. C. Geol. Ass. Can. spec. Pap. 20, 685–704 (1980).

    CAS  Google Scholar 

  19. Oudin, E. & Constantinou, G. Nature 308, 349–353 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Spooner, E. T. C. in Volcanic Processes in Ore Genesis, 58–71 (Geological Society of London, 1977).

    Google Scholar 

  21. Schiffman, P. et al. Eos 66, 402 (1985).

    Google Scholar 

  22. Ishizuka, H. J. Petrol. 26, 391–417 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Wilson, R. A. M. The Geology of the Xeros - Troodos Area (Cyprus Geological Survey Memoir 1, 1959).

    Google Scholar 

  24. International Crustal Research Drilling Program Geotimes 29, 12–14 (1984).

  25. Potter, R. W. J. Res. U.S. geol. Surv. 5, 603–607 (1977).

    ADS  CAS  Google Scholar 

  26. Schiffman, P. et al. Eos 66, 1128 (1985).

    Google Scholar 

  27. Spooner, E. T. C. & Bray, C. T. Nature 266, 808–812 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Reed, M. H. Econ. Geol. 78, 446–485 (1983).

    Article  Google Scholar 

  29. Pearce, J. A. & Cann, J. R. Earth planet. Sci. Lett. 19, 290–300 (1973).

    Article  ADS  CAS  Google Scholar 

  30. Varga, R. J. & Moores, E. M. Geol. Soc. Am. Abstr. Progm. 18, 194 (1986).

    Google Scholar 

  31. Clayton, R. N. et al. J. Geophys. Res. 77, 3057–3067 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffman, P., Smith, B., Varga, R. et al. Geometry, conditions and timing of off-axis hydrothermal metamorphism and ore-deposition in the Solea graben. Nature 325, 423–425 (1987). https://doi.org/10.1038/325423a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325423a0

  • Springer Nature Limited

This article is cited by

Navigation