Skip to main content
Log in

Functional architecture of cortex revealed by optical imaging of intrinsic signals

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Optical imaging of cortical activity offers several advantages over conventional electrophysiological and anatomical techniques. One can map a relatively large region, obtain successive maps to different stimuli in the same cortical area and follow variations in response over time. In the intact mammalian brain this imaging has been accomplished with the aid of voltage sensitive dyes1–5. However, it has been known for many years that some intrinsic changes in the optical properties of the tissue are dependent on electrical or metabolic activity6–13. Here we show that these changes can be used to study the functional architecture of cortex. Optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex, obtained by reflection measurements of the intrinsic signal, were confirmed with voltage sensitive dyes or by electrophysiological recordings. In addition, we describe an intrinsic signal originating from small arteries which can be used to investigate the communication between local neuronal activity and the microvasculature. One advantage of the method is that it is non-invasive and does not require dyes, a clear benefit for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salzberg, B. M., Davila, H. V. & Cohen, L. B. Nature 246, 508–509 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Salzberg, B. M. in Current Methods in Cellular Neurobiology (ed. Barker, J. L.) 139–187 (Wiley, New York, 1983).

    Google Scholar 

  3. Grinvald, A. A. Rev. Neurosci. 8, 263–305 (1985).

    Article  CAS  Google Scholar 

  4. Cohen, L. B. & Lesher, S. L. in Optical Methods in Cell Physiology (eds DeWeer, P. & Salzberg, B. M.) 71–99 (Wiley, New York, 1986).

    Google Scholar 

  5. Orbach, H. S., Cohen, L. B. & Grinvald, A. J. Neurosci. 5, 1553–1564 (1985).

    Article  Google Scholar 

  6. Grinvald, A., Manker, A. & Segal, M. J. Physiol., Lond. 333, 269–291 (1982).

    Article  CAS  Google Scholar 

  7. Hill, D. K. & Keynes, R. D. J. Physiol., Lond. 108, 278–281 (1949).

    Article  Google Scholar 

  8. Cohen, L. B., Keynes, R. D. & Hille, B. Nature 218, 438–441 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Tasaki, I., Watanabe, A., Sandlin, R. & Carnay, L. Proc. natn. Acad. Sci. U.S.A. 61, 883–888 (1968).

    Article  ADS  CAS  Google Scholar 

  10. Lipton, P. J. Physiol., Lond. 231, 365–383 (1973).

    Article  CAS  Google Scholar 

  11. Salzberg, B. M., Obaid, A. L. & Gainer, H. J. gen. Physiol. 86, 395–411 (1985).

    Article  CAS  Google Scholar 

  12. Chance, B., Cohen, P., Jobsis, F. & Schoener, B. Science 137, 499–508 (1962).

    Article  ADS  CAS  Google Scholar 

  13. Jobsis, F. F., Keizer, J. H., LaManna, J. C. & Rosental, M. J. appl. Physiol. 43, 858–872 (1977).

    Article  CAS  Google Scholar 

  14. Blasdel, G. G. & Salama, G. Nature 321, 579–585 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Woolsey, T. A. & Van der Loos,H. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  16. Grinvald, A., Cohen, L. B., Lesher, S. & Boyle, M. B. J. Neurophysiol. 45, 829–840 (1981).

    Article  CAS  Google Scholar 

  17. Grinvald, A., Anglister, L., Freeman, J. A., Hildesheim, R. & Manker, A. Nature 308, 848–850 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Roy, C. S. & Sherrington, C. S. J. Physiol., Lond. 11, 85–108 (1890).

    Article  CAS  Google Scholar 

  19. Lassen, N. A. & Ingvar, D. H. Experientia 17, 42–43 (1961).

    Article  CAS  Google Scholar 

  20. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  21. Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V. & Ross, W. N. J. Neurophysiol. 40, 1281–1291 (1977).

    Article  CAS  Google Scholar 

  22. Grinvald, A., Salzberg, B. M. & Cohen, L. B. Nature 268, 140–142 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Senseman, D. M. & Salzberg, B. M. Science 208, 1267–1271 (1980).

    Article  ADS  Google Scholar 

  24. Ross, W. N. & Krauthamer, V. J. Neurosci. 4, 659–672 (1984).

    Article  CAS  Google Scholar 

  25. Konnerth, A. & Orkand, R. K. Neurosci. Lett. 66, 49–54 (1986).

    Article  CAS  Google Scholar 

  26. Cohen, L. B. Physiol. Rev. 353, 373–418 (1973).

    Article  Google Scholar 

  27. Millikan, G. A. Proc. R. Soc. B123, 218–241 (1937).

    ADS  CAS  Google Scholar 

  28. Jobsis, F. F. Science 198, 1264–1267 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Mook, G. A., Osypka, P., Strum, R. E. & Wood, E. H. Cardiovasc. Res. 2, 199–209 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinvald, A., Lieke, E., Frostig, R. et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986). https://doi.org/10.1038/324361a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324361a0

  • Springer Nature Limited

This article is cited by

Navigation