Skip to main content
Log in

Oceanographic implications of non-newtonian properties found in phytoplankton cultures

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Bulk Theological properties of sea water sometimes change in phytoplankton blooms1–7, when the water has been described as viscous1, slimey2,3, ropey2–4 or like egg white4. Fishing nets have been clogged2,5,7 and broken2, and bubbles6 or solids2,4,5 have been trapped. Turbulent viscosity, however, can be reduced8. It has been suggested1,2,6 that phytoplankton mucus may kill marine animals by ‘clogging’ their gills. Yet oceanographers consider the sea to be newtonian, that is without rigidity and with dynamic viscosity, η, independent of shear rate, γ. I show here that out of eight phytoplankton cultures investigated, η increased with decreasing γ in three, and the highest value of η, found at γ = 0.017 s−1, was ∼400 times that found at unstated but probably high (102-5 x 103 s−1) values of γ by Miyaki and Koizumi9. Finite values of dynamic rigidity, G′′, were also observed. The characteristic length, L, and time, t, of Kolmogorov eddies10 are extremely sensitive to simulated γ-dependent η, and as the scales of many oceanic processes depend on L and r, the lack of rheometrical data at ambient γ could be detrimental to the modelling of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsusato, T. & Kobayashi, H. Bull. Nansei reg. Fish. Res. Lab. No. 7, 43–67 (1974).

  2. Subrahmanyan, R. Ind. J. Fish. 1, 182–203 (1954).

    Google Scholar 

  3. Hollande, A. & Enjumet, M. Bull. Stn Aquic. Peche Castiglione, N. Sér. No. 8, 271–280 (1956).

  4. Dreyfuss, R. Cah. Cent. Etud. Rech. Biol. Océanogr. méd., Nice No. 1, 14–15 (1962).

  5. Boalch, G. T. & Harbour, D. S. Nature 269, 687–688 (1977).

    Article  ADS  Google Scholar 

  6. Jenkinson, I. R. & Connors, P. P. J. Sherkin Island 1(2), 1–19 (1980).

    Google Scholar 

  7. Chang, F. H. N. Z. J. mar. freshwat. Res. 17, 165–168 (1983).

    Article  Google Scholar 

  8. Hoyt, J. W. Mar. Biol. Berlin. 7, 93–99 (1970).

    Article  Google Scholar 

  9. Miyake, Y. & Koizumi, M. J. mar. Res. 7, 63–66 (1948).

    CAS  Google Scholar 

  10. Batchelor, G. K. The Theory of Homogeneous Turbulence (Cambridge University Press, 1970).

    Google Scholar 

  11. Van Leer, J. C. & Rooth, C. G. Deep-Sea Res. 22, 831–836 (1975).

    Google Scholar 

  12. Kitaigorodskii, S. A. J. phys. Oceanogr. 14, 960–972 (1984).

    Article  ADS  Google Scholar 

  13. Crochet, M. J., Davies, A. R. & Walters, K. Numerical Simulation of Non-Newtonian Flow (Elsevier, Amsterdam, 1984).

    MATH  Google Scholar 

  14. Horne, R. A. Marine Chemistry (Wiley-Interscience, New York, 1969).

    Google Scholar 

  15. Beasley, K. M. in Rheometry: Industrial Applications (ed. Walters, K.) 339–413 (Research Studies Press, Chichester, 1980).

    Google Scholar 

  16. Oakey, N. S. J. phys. Oceanogr. 12, 256–271 (1982).

    Article  ADS  Google Scholar 

  17. Gadd, G. E. Nature 206, 463–467 (1965).

    Article  ADS  Google Scholar 

  18. Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Nature 316, 58–59 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Margalef, R., Estrada, M. & Blasco, D. in Toxic Dinoflagellate Blooms (eds. Taylor, D. L. & Seliger, H. H.) 89–94 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  20. Lancelot, C. Estuar. coast. Shelf Sci. 18, 593–600 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Fryxell, G. A., Gould, R. W. Jr, Balmori, E. R. & Theriot, E. C. J. Plankton Res. 7, 339–364 (1985).

    Article  Google Scholar 

  22. Smetacek, V. S. Mar. Biol. Berlin 84, 239–251 (1985).

    Article  Google Scholar 

  23. Jenkinson, I. R. Mar. Pollut. Bull. 3, 102–105 (1972).

    Article  CAS  Google Scholar 

  24. Sharp, J. H. Limnol. Oceanogr. 22, 381–399 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Mague, J. H., Friberg, E., Hughes, D. J. & Morris, I. Limnol. Oceanogr. 25, 262–279 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Williams, P. J. LeB. in (eds Riley, J. P. & Skirrow, G.) Chemical Oceanography (2nd edn) 301–363 (Academic, London, 1975).

    Google Scholar 

  27. Ogura, N. Mar. Biol., Berlin 24, 305–312 (1974).

    Article  CAS  Google Scholar 

  28. Ogura, N. Mar. Biol, Berlin 31, 101–111 (1975).

    Article  CAS  Google Scholar 

  29. Williams, P. M., Oescher, H. & Kinney, P. J. Nature 224, 256–258 (1969).

    Article  ADS  CAS  Google Scholar 

  30. Jensen, L. M. Mar. Ecol. Prog. Ser. 11, 39–48 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Oakey, N. S. J. phys. Oceanogr. 15, 1662–1675 (1985).

    Article  ADS  Google Scholar 

  32. Thorpe, S. A. Nature 318, 519–522 (1985).

    Article  ADS  Google Scholar 

  33. Parke, M. & Dixon, P. S. J. mar. biol. Ass. U.K. 56, 527–594 (1976).

    Article  Google Scholar 

  34. Strathmann, R. R. Limnol. Oceanogr. 12, 411–418 (1967).

    Article  ADS  CAS  Google Scholar 

  35. Starr, R. C. Am. J. Bot. 51, 1013–1044 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkinson, I. Oceanographic implications of non-newtonian properties found in phytoplankton cultures. Nature 323, 435–437 (1986). https://doi.org/10.1038/323435a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323435a0

  • Springer Nature Limited

This article is cited by

Navigation