Skip to main content
Log in

Mobilization of cryogenic ice in outer Solar System satellites

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Voyager images1 of the uranian satellites show a diversity of geological features, including clear evidence for the ‘softening’ and mobilization of ice on Miranda and Ariel. Some of these features are similar to those seen on jovian and saturnian satellites, where the mobile material is believed to be water or a water–ammonia mixture. However, the extremely low temperatures and probable unavailability of large energy sources within the uranian satellites lead us to consider flow mechanisms that operate at very low temperature (T ≤ 100 K). We propose here a form of pressure-solution creep, in which very fine-grained water ice or clathrate hydrate is mobilized by a small amount of intergranular cryogenic fluid (CH4, CO or N2). Viscosities as low as 1012 P are possible for a limited time, sufficient to allow flooding of rift valleys and perhaps even substantial lateral flows (glaciers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, B. A. et al. Science 233, 43–64 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Stevenson, D. J. in Uranus and Neptune (ed. Bergstralh, J. T.) 405–423 (NASA Conf. Publ. No. 2330, 1984).

    Google Scholar 

  3. Lunine, J. I. & Stevenson, D. J. Astrophys. J. Suppl. Ser. 58, 493–531 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Fyfe, W. S., Turner, F. J. & Verhoogen, J. Mem. geol. Soc. Am. No. 73 (1958).

  5. Rutter, E. H. Phil. Trans. R. Soc. A283, 203–219 (1976).

    Article  ADS  Google Scholar 

  6. Durney, D. W. Phil. Trans. R. Soc. A283, 229–240 (1976).

    Article  ADS  Google Scholar 

  7. Pharr, G. M. & Ashby, M. F. Acta metall. 31, 129–138 (1983).

    Article  CAS  Google Scholar 

  8. Turcotte, D. L. & Schubert, G. Geodynamics, 335 (Wiley, New York, 1982).

  9. Rebiai, R., Rest, A. J. & Scurlock, R. G. Nature 305, 412–413 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Siever, R. J. Geol. 70, 127–150 (1962).

    Article  ADS  CAS  Google Scholar 

  11. Eisenberg, D. & Kauzmann, W. The Structure and Properties of Water, 99–175 (Oxford University Press, 1969).

    Google Scholar 

  12. Vegard, L. Z. Phys. 61, 185–190 (1930).

    Article  ADS  CAS  Google Scholar 

  13. Rudenko, N. W. & Schubikow, L. W. Phys. Z. SowjUn. 6, 470 (1934).

    CAS  Google Scholar 

  14. Longuet-Higgins, H. C. & Pople, J. A. J. chem. Phys. 25, 884 (1956).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Draine, B. T. in Protostars and Planets II (eds Black, D. C. & Matthews, M. A.) 621–640 (University of Arizona Press, Tucson, 1985).

    Google Scholar 

  16. Ney, E. P. in Comets (ed. Wilkening, L. L.) 323–340 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

  17. Brownlee, D. E. in Protostars and Planets (ed. Gehrels, T.) 134–150 (University of Arizona Press, Tucson, 1978).

    Google Scholar 

  18. Van Kasteren, P. H. G. Bull. Inst. int. Froid. Annexe 4, 81–87 (1973).

    Google Scholar 

  19. Weyl, W. A. in Rheology: Theory and Applications Vol. 3 (ed. Eirich, F. R.) 299–340 (Academic, New York, 1960).

    Google Scholar 

  20. Hobbs, P. V. Ice Physics Ch. 4 (Clarendon, Oxford, 1974).

  21. Stevenson, D. J. Nature 298, 142–144 (1982).

    Article  ADS  CAS  Google Scholar 

  22. McKinnon, W. B. & Meadows, M. Bull. Am astr. Soc. 16, 686 (1984).

    Google Scholar 

  23. Friedson, A. J. & Stevenson, D. J. Icarus 56, 1–14 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, D., Lunine, J. Mobilization of cryogenic ice in outer Solar System satellites. Nature 323, 46–48 (1986). https://doi.org/10.1038/323046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323046a0

  • Springer Nature Limited

This article is cited by

Navigation