Skip to main content
Log in

The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The requirement for molybdenum in biological dinitrogen fixation, first reported by Bortels1, is due to its involvement at or near the site of reduction of N2 in conventional nitrogenase. To date, all nitrogenases which have been purified to homogeneity consist of an iron protein (component 2) and a molybdoprotein (component 1)2. Azotobacter vinelandii, an obligately aerobic diazotrophic bacterium, has two systems for nitrogen fixation: a conventional nitrogenase involving molybdenum and an alternative system which functions under conditions of Mo deficiency and does not require the structural genes for conventional nitrogenase3–6. The properties of the nitrogenase in extracts of comparable deletion strains of A. vinelandii are consistent with a two-component system6,7 in which the component 1-containing fraction has no detectable Mo (ref. 6). Recently, an alternative nitrogen fixation system has been demonstrated in Azotobacter chroococcum strain MCD1155, in which the structural genes for conventional nitrogenase are deleted8. We demonstrate here that nitrogen fixation by this strain depends on vanadium and we show that its purified nitrogenase is a binary system in which the conventional molybdoprotein is replaced by a vanadoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bortels, H. Arch. Mikrobiol. 1, 333–342 (1930).

    Article  CAS  Google Scholar 

  2. Burgess, B. K. in Advances in Nitrogen Fixation Research (eds Veeger, C. & Newton, W. E.) 103–114 (Nijhoff/Junk, Pudoc, 1984).

    Book  Google Scholar 

  3. Bishop, P. E., Jarlneski, D. M. L. & Hetherington, D. R. Proc. natn. Acad. Sci. U.S.A. 77, 7342–7346 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Bishop, P. E., Jarlenski, D. M. L. & Hetherington, D. R. J. Bact. 150, 1244–1251 (1982).

    CAS  PubMed  Google Scholar 

  5. Bishop, P. E. & Eady, R. R. in Nitrogen Fixation Research Progress (eds Evans, H. J., Bottomley, P. J. & Newton, W. E.) 622 (Nijhoff, Dordrecht, 1985).

  6. Hales, B. J., Case, E. E. & Langosch, D. in Nitrogen Fixation Research Progress (eds Evans, H. J., Bottomley, P. J. & Newton, W. E.) 612 (Nijhoff, Dordrecht, 1985).

    Google Scholar 

  7. Chisnell, J. R. & Bishop, P. E. in Nitrogen Fixation Research Progress (eds Evans, H. J., Bottomley, P. J. & Newton, W. E.) 623 (Nijhoff, Dordrecht, 1985).

    Google Scholar 

  8. Robson, R. L. Archiv. Microbiol. (in the press).

  9. Yates, M. G. & Planqué, K. Eur. J. Biochem. 60, 467–476 (1975).

    Article  CAS  Google Scholar 

  10. Jones, R., Woodley, P. R. & Robson, R. L. Molec. gen. Genet. 197, 318–327 (1984).

    Article  CAS  Google Scholar 

  11. Takahashi, H. & Nason, A. Biochim. biophys. Acta 23, 433–435 (1957).

    Article  CAS  Google Scholar 

  12. Keeler, R. F. & Varner, J. E. Archs Biochem. Biophys. 70, 585–590 (1957).

    Article  CAS  Google Scholar 

  13. Bortels, H. Zentre. Bakteriol. Parasitenk. Abt. II 95, 193–218 (1936).

    CAS  Google Scholar 

  14. Nicholas, D. J. D., Fisher, D. J., Redmond, W. J. & Wright, M. A. J. gen. Microbiol. 22, 191–205 (1960).

    Article  CAS  Google Scholar 

  15. Becking, J. H. Pl. Soil 2, 171–201 (1962).

    Article  Google Scholar 

  16. McKenna, C. E., Benemann, J. R. & Traylor, T. C. Biochem. biophys. Res. Commun. 41, 1501–1508 (1970).

    Article  CAS  Google Scholar 

  17. Burns, R. C., Fuchsman, W. H. & Hardy, R. W. F. Biochem. biophys. Res. Commun. 42, 353–358 (1971).

    Article  CAS  Google Scholar 

  18. Benemann, J. R., McKenna, C. E., Lie, R. F., Traylor, T. G. & Kamen, M. D. Biochim. biophys. Acta 264, 25–38 (1972).

    Article  CAS  Google Scholar 

  19. Eady, R. R., Smith, B. E., Cook, K. A. & Postgate, J. R. Biochem. J. 128, 655–675 (1972).

    Article  CAS  Google Scholar 

  20. Robson, R., Woodley, P. & Jones, R. EMBO J. 5, 1159–1163.

  21. Krylova, N. B. Dokl. Mosk. Sel' Kokhoz. Akad. 84, 293–299 (1963).

    Google Scholar 

  22. Singh, N. H., Vaishampayan, A. & Singh, R. K. Biochem. biophys. Res. Commun. 81, 67–74 (1978).

    Article  CAS  Google Scholar 

  23. Bowen, H. J. M. Trace Elements in Biochemistry (Academic, London, 1966).

    Google Scholar 

  24. Denisov, N. T., Efimov, O. N., Shuvalova, N. I., Shilova, A. K. & Shilov, A. E. Russ. J. phys. Chem. 44, 1693–1694 (1970).

    Google Scholar 

  25. Nikinova, L. A., Ovcharenko, A. G., Eflmov, O. N., Avilov, V. A. & Shilov, A. E. Kin. i. Kat. 13, 1602–1603 (1972).

    Google Scholar 

  26. Eady, R. R. Meth. Enzym. 69, 751–776 (1980).

    Google Scholar 

  27. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Bulen, W. A. & Le Comte, J. R. Proc. natn. Acad. Sci. U.S.A. 51, 979–989 (1966).

    Article  ADS  Google Scholar 

  29. Jensen, H. L. & Spencer, D. Proc. Linn. Soc. N. S. Wales 72, 73–86.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, R., Eady, R., Richardson, T. et al. The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 322, 388–390 (1986). https://doi.org/10.1038/322388a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322388a0

  • Springer Nature Limited

This article is cited by

Navigation