Skip to main content
Log in

Phorbol ester facilitates 45Ca accumulation and catecholamine secretion by nicotine and excess K+ but not by muscarine in rat adrenal medulla

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Several investigators have shown that tumour promoter phorbol esters mimic the effects of endogenous diacylglycerol to activate a second messenger, protein kinase C (refs 1–3). These phorbol esters have proved to be valuable tools for exploring the role of protein kinase C in many cellular functions3–8. We demonstrate here that secretion of catecholamines evoked from the rat adrenal gland9,10 by stimulation of splanchnic nerves, excess potassium (K+) and nicotine is facilitated by phorbol 12,13-dibutyrate. An inhibitor of protein kinase C, polymixin B, produced concentration-dependent inhibition of the evoked secretion, and the effect was reversed by the phorbol ester. Furthermore, we show that an increase in the accumulation of radioactively labelled calcium (45Ca) obtained in the adrenal medulla after stimulation with nicotinic agonists and excess K+ is further enhanced by phorbol ester. Muscarine-evoked secretion of catecholamines, which depends on mobilization of intracellularly bound Ca2+, was not associated with an increase in 45Ca2+ uptake, and phorbol ester did not facilitate either catecholamine secretion or 45Ca2+ accumulation. We suggest that protein kinase C is involved in the exocytotic secretion of catecholamines by regulating the influx of Ca2+ through voltage-sensitive and nicotine receptor-linked Ca2+ channels of rat chromaffin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  Google Scholar 

  2. Niedel, J. E., Kuhn, L. J. & Vandenbork, G. R. Proc. natn. Acad. Sci. U.S.A. 80, 36–40 (1982).

    Article  ADS  Google Scholar 

  3. Yamanishi, J., Takai, Y., Mori, T., Kikkawa, U. & Nishizuka, Y. Biochem. biophys. Res. Commun. 112, 778–786 (1983).

    Article  CAS  Google Scholar 

  4. Knight, D. E. & Baker, P. F. FEBS Lett. 160, 98–100 (1983).

    Article  CAS  Google Scholar 

  5. Peterfreund, R. A. & Vale, W. W. Endocrinology 113, 200–208 (1983).

    Article  CAS  Google Scholar 

  6. Tanaka, C., Taniyama, K. & Kusunoki, M. FEBS Lett. 175, 165–169 (1984).

    Article  CAS  Google Scholar 

  7. Barban, J. M., Gould, R. J., Peroutka, S. J. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 82, 604–607 (1985).

    Article  ADS  Google Scholar 

  8. Wakade, A. R., Malhotra, R. K. & Wakade, T. D. Naunyn Schmiedebergs Archs Pharmak. 331, 122–124 (1985).

    Article  CAS  Google Scholar 

  9. Wakade, A. R. J. Physiol., Lond. 313, 463–480 (1981).

    Article  CAS  Google Scholar 

  10. Wakade, A. R. & Wakade, T. D. Neuroscience 10, 973–978 (1983).

    Article  CAS  Google Scholar 

  11. Anton, A. H. & Sayre, D. F. J. Pharmac. exp. Ther. 138, 360–375 (1962).

    CAS  Google Scholar 

  12. Wise, B. C. et al. J. biol. Chem. 257, 8489–8495 (1982).

    CAS  PubMed  Google Scholar 

  13. Wise, B. C. & Kuo, J. F. Biochem. Pharmac. 32, 1259–1265 (1983).

    Article  CAS  Google Scholar 

  14. Pocotte, S. L. et al. Proc. natn. Acad. Sci. U.S.A. 82, 930–934 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Brocklehurst, K. W., Morita, K. & Pollard, H. B. Biochem. J. 228, 35–42 (1985).

    Article  CAS  Google Scholar 

  16. Pozzan, T., Gatti, G., Dozio, N., Vicentini, L. M. & Meldolesi, J. J. Cell Biol. 99, 628–638 (1984).

    Article  CAS  Google Scholar 

  17. De Reimer, S. A., Strong, J. A., Albert, K. A., Greengard, P. & Kaczmarck, L. K. Nature 313, 313–316 (1985).

    Article  ADS  Google Scholar 

  18. Takai, Y., Kikkawa, U., Kaibuchi, K. & Nishizuka, Y. Adv. Cyclic Nucleotide Res. 18, 119–158 (1984).

    CAS  Google Scholar 

  19. Wu, W. C. S., Walass, S. I., Nairn, A. C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 79, 5249–5253 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Turner, R. S., Chou, C. H. J., Kibler, R. F. & Kuo, J. F. J. Neurochem. 39, 1397–1404 (1982).

    Article  CAS  Google Scholar 

  21. Wrenn, R. W., Katch, N., Wise, B. C. & Kuo, J. F. J. biol. Chem. 255, 12042–12046 (1980).

    CAS  PubMed  Google Scholar 

  22. Streb, H., Irvine, R. F., Berridge, M. J. & Schulz, I. Nature 306, 67–69 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Schneider, A. S. & Kao, L. S. J. biol. Chem. 260, 2019–2022 (1985).

    PubMed  Google Scholar 

  24. Knight, D. E. & Baker, P. F. J. Membrane Biol. 68, 107–140 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakade, A., Malhotra, R. & Wakade, T. Phorbol ester facilitates 45Ca accumulation and catecholamine secretion by nicotine and excess K+ but not by muscarine in rat adrenal medulla. Nature 321, 698–700 (1986). https://doi.org/10.1038/321698a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321698a0

  • Springer Nature Limited

This article is cited by

Navigation