Skip to main content

Advertisement

Log in

Phosphate pumps and shuttles in the Black Sea

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Phosphate distributions in oxic–anoxic ocean basins are related to distributions of total oxygen consumed (mainly from free oxygen, nitrate and sulphate) in the decomposition of organic matter1,2. Data from the Black Sea show, however, that phosphate concentrations immediately above and below the redox front are considerably lower and higher, respectively, than would be predicted from such stoichiometric models. This implies extra sinks and/or sources of phosphate and/or total oxygen not associated with organic decomposition. Here, I present two physical–biogeochemical interactions that result in phosphate sinks and sources with the structure needed to explain the observed phosphate anomalies. A phosphate pump based on iron can account for up to 40% of the required sink–source strength. The rest may be caused by a phosphate shuttle based on manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richards, F. A. in Proc. 2nd Int. Wat. Pollut. Res. Conf. Tokyo 1964, 215–243 (Pergamon, Oxford, 1965).

  2. Richards, F. A. in Chemical Oceanography Vol. 1, (eds Riley, J. P. & Skirrow, G.) 611–645 (Academic, London, 1965).

    Google Scholar 

  3. Brewer, P. G. Woods Hole Oceanogr. Inst. Tech. Rep. Ref. no. 71-65 (1971).

  4. Spencer, D. W. & Brewer, P. G. J. geophys. Res. 76, 5877–5892 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Cox, M. G. J. Inst. Math. Appl. 10, 134–149 (1972).

    Article  MathSciNet  Google Scholar 

  6. Fonselius, S. H. in The Black Sea—Geology, Chemistry and Biology (eds Degens, E. T. & Ross, D. A.) 144–150 (American Association of Petroleum Geologists, Tulsa, 1984).

    Google Scholar 

  7. Brewer, P. G. & Murray, J. W. Deep-Sea Res. 29, 803–818 (1973).

    Google Scholar 

  8. Shaffer, G. & Rönner, U. Deep-Sea Res. 31, 197–220 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Grasshof, K. in Chemical Oceanography Vol. 2 (eds Riley, J. P. & Skirrow, G.) 455–597 (Academic, London, 1975).

    Google Scholar 

  10. Einsele, W. Archiv. Hydrobiol. Plankton 33, 361–387 (1938).

    Google Scholar 

  11. Krom, M. D. & Berner, R. A. Geochim. cosmochim. Acta 45, 207–216 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Deuser, W. G. in The Black Sea—Geology, Chemistry, and Biology (eds Degens, E. T. & Ross, D. A.) 133–136 (American Association of Petroleum Geologists, Tulsa, 1974).

    Google Scholar 

  13. Merz, A. & Möller, L. Veröff. Inst. Meeresforsch. Berlin. Neue Folge A18 (1928).

  14. Shaffer, G. J. Phys. Oceanogr. 9, 847–855 (1979).

    Article  ADS  Google Scholar 

  15. Walin, G. Tellus 29, 128–136 (1977).

    Article  ADS  Google Scholar 

  16. Csanady, G. T. in Circulation in the Coastal Ocean (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  17. Neumann, G. Z. Ges. Erdk. Berl. 3, 92–114 (1944).

    Google Scholar 

  18. Balzer, W., Grasshoff, K., Dieckmann, P., Haardt, H. & Petersohn, U. Oceanol. Acta 6, 337–344 (1983).

    CAS  Google Scholar 

  19. Holm, N. Ophelia Suppl. 1, 287–304 (1978).

    Google Scholar 

  20. Li, Y.-H. & Gregory, S. Geochim. cosmochim. Acta 38, 703–714 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Santschi, P. H., Bower, P., Nyffeler, U. P., Azevedo, A. & Broecker, W. S. Limnol. Oceanogr. 28, 899–912 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Spencer, D. W., Brewer, P. G. & Sachs, P. L. Geochim. cosmochim. Acta 36, 71–86 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaffer, G. Phosphate pumps and shuttles in the Black Sea. Nature 321, 515–517 (1986). https://doi.org/10.1038/321515a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321515a0

  • Springer Nature Limited

This article is cited by

Navigation