Skip to main content

Advertisement

Log in

Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The basic principles of the architecture of many viral protein shells have been successfully established from electron microscopy and X-ray data1–4, but enveloped viruses have been more difficult to study because they resist crystallization and are easily deformed when prepared for electron microscopy. To avoid the limitations of conventional techniques when applied to enveloped viruses, we have used a cryo-electron microscopy method in which unfixed and unstained viruses are observed in an unsupported thin layer of vitrified suspension5,6. Because of electron beam damage, the many different views required for high-resolution three-dimensional reconstruction cannot be obtained from a tilt series of the same particle. The images of many differently oriented viruses are combined using a novel reconstruction method, ‘reconstruction by optimized series expansion’ (ROSE)7. The structure of the envelope of Semliki Forest virus has been reconstructed to 3.5-nm resolution. The T = 4 geometry of the surface lattice, the shape of the trimeric spikes and their arrangement on the lipid bilayer are visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caspar, D. L. D. & Klug, A. Cold Spring Harb. Symp. quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  2. Harrison, S. C. Adv. Virus Res. 28, 175–240 (1983).

    Article  CAS  Google Scholar 

  3. Harrison, S. C., Olson, A., Schutt, C. E., Winkler, F. K. & Bricogne, G. Nature 276, 368–373 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Rossmann, M. G. et al. Nature 317, 145–153 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. Nature 308, 32–36 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Stewart, M. & Vigers, G. Nature 319, 631–636 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Provencher, S. W. & Vogel, R. H. in Progress in Scientific Computing Vol. 2 (eds Deuflhard, P. & Hairer, H.) 304–319 (Birkhauser, Boston, 1983).

    Google Scholar 

  8. von Bonsdorff, C.-H. & Harrison, S. C. J. Virol. 16, 141–145 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. von Bonsdorff, C.-H. & Simons, K. in Animal Virus Structure (eds Nermut, V. & Steven, A. C.) (Elsevier, Amsterdam, in the press).

  10. Simons, K. & Garoff, H. J. gen. Virol. 50, 1–21 (1980).

    Article  CAS  Google Scholar 

  11. Söderlund, H. von Bonsdorff, C.-H. & Ulmanen, I. J. gen. Virol. 45, 15–26 (1979).

    Article  Google Scholar 

  12. Lepault, J. & Pitt, T. EMBO J. 3, 101–105 (1984).

    Article  CAS  Google Scholar 

  13. Freeman, R. & Leonard, K. R. J. Microsc. 122, 275–286 (1981).

    Article  CAS  Google Scholar 

  14. Simons, K. & Warren, G. Adv. Protein Chem. 36, 79–132 (1984).

    Article  CAS  Google Scholar 

  15. Rossman, M. G. Virology 134, 1–11 (1984).

    Article  Google Scholar 

  16. Skehel, J. J. et al. Proc. natn. Acad. Sci. U.S.A. 79, 968–972 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H. & Delius, H. Nature 288, 236–241 (1980).

    Article  ADS  CAS  Google Scholar 

  18. von Bonsdorff, C.-H. & Harrison, S. C. J. Virol. 28, 578–583 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kam, Z. J. theor. Biol. 82, 15–39 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, R., Provencher, S., von Bonsdorff, CH. et al. Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature 320, 533–535 (1986). https://doi.org/10.1038/320533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320533a0

  • Springer Nature Limited

This article is cited by

Navigation