Skip to main content
Log in

A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Contraction of a vertebrate skeletal muscle fibre is triggered by electrical depolarization of sarcolemmal infoldings termed transverse-tubules (t-tubules), which in turn causes the release of calcium from an internal store, the sarcoplasmic reticulum (SR)1,2. The mechanism that links t-tubular depolarization to SR calcium release remains poorly understood. In principle, this link might be provided by the prominent slow calcium current that has been described in skeletal muscle cells of adult frogs3,4 and rats5. However, blocking this current does not abolish the depolarization-induced contractile responses of frog muscle6, and the function of this slow calcium current is unknown. Here we describe measurements of calcium currents in developing skeletal muscle cells of normal rats and mice, and of mice with muscular dysgenesis, a mutation7 that causes excitation–contraction (E–C) coupling to fail8. We find that a slow calcium current is present in skeletal muscle cells of normal animals but absent from skeletal muscle cells of mutant animals. The effect of the mutation is specific to the slow calcium current of skeletal muscle; a fast calcium current is present in developing skeletal muscle cells of both normal and mutant animals, and slow calcium currents are present in cardiac and sensory neurones of mutant animals. We believe this to be the first report of a mutation affecting calcium currents in a multicellular organism. The effects of the mutation raise important questions about the relationship between the slow calcium current and skeletal muscle E–C coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costantin, L. L. Prog. Biophys. molec. Biol. 29, 197–224 (1975).

    Article  CAS  Google Scholar 

  2. Endo, M. Physiol. Rev. 57, 71–108 (1977).

    Article  CAS  Google Scholar 

  3. Sanchez, J. A. & Stefani, E. J. Physiol., Lond. 283, 197–209 (1978).

    Article  CAS  Google Scholar 

  4. Almers, W., Fink, R. & Palade, P. T. J. Physiol., Lond. 312, 177–207 (1981).

    Article  CAS  Google Scholar 

  5. Donaldson, P. L. & Beam, K. G. J. gen. Physiol.. 82, 449–468 (1983).

    Article  CAS  Google Scholar 

  6. Gonzalez-Serratos, H., Valle-Aguilera, R., Lathrop, D. A. & del Carmen Garcia, M. Nature 298, 292–294 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Gluecksohn-Waelsch, S. Science. 142, 1269–1276 (1963).

    Article  ADS  CAS  Google Scholar 

  8. Powell, J. A. & Fambrough, D. M. J. cell. Physiol.. 82, 21–38 (1973).

    Article  CAS  Google Scholar 

  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers. Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  10. Bean, B. P. J. gen. Physiol. 86, 1–30 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Nilius, B., Hess, P., Lansman, J. B. & Tsien, R. W. Nature 316, 443–446 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Bean, B. P., Sturek, M., Puga, A. & Hermsmeyer, K. J. gen. Physiol. 86, 23a (1985).

    Article  Google Scholar 

  13. Armstrong, C. M. & Matteson, D. R. Science 277, 65–67 (1985).

    Article  ADS  Google Scholar 

  14. Tsunoo, A., Yoshii, M. & Narahashi, T. Biophys. J. 47, 433a (1985).

    Google Scholar 

  15. Carbone, E. & Lux, H. D. Nature. 310, 501–502 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Fedulova, S. A., Kostyuk, P. G. & Veselovsky, N. S. J. Physiol., Lond. 359, 431–446 (1985).

    Article  CAS  Google Scholar 

  17. Bossu, J. L., Feltz, A. & Thomann, J. M., Pflügers Arch. ges. Physiol. 403, 360–368 (1985).

    Article  CAS  Google Scholar 

  18. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Nature. 316, 440–443 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Bowden-Essien, F. Devl Biol. 27, 351–364 (1972).

    Article  CAS  Google Scholar 

  20. Klaus, M. M., Stylianos, P. S., Rapalus, J. M., Briggs, R. T. & Powell, J.A. Devl Biol. 99, 152–165 (1983).

    Article  CAS  Google Scholar 

  21. Pincon-Raymond, M., Rieger, F., Fosset, M. & Lazdunski, M. Devl Biol. 112, 458–466 (1985).

    Article  CAS  Google Scholar 

  22. Haga, N. et al. Cell 39, 71–78 (1984).

    Article  CAS  Google Scholar 

  23. Rios, E., Brum, G. & Stefani, E. Biophys J. 49, 13a (1986).

    Article  Google Scholar 

  24. Nicola Siri, L., Sanchez, J. A. & Stefani, E. J. Physiol., Lond. 305, 87–96 (1980).

    Article  Google Scholar 

  25. Fosset, M., Jaimovich, E., Delpont, E. & Lazdunski, M. J. biol. Chem. 258, 6086–6092 (1983).

    CAS  PubMed  Google Scholar 

  26. Glossman, H., Ferry, D. R. & Boschek, C. B., Naunyn-Schmiedebergs Archs Pharmak. 323, 1–11 (1983).

    Article  Google Scholar 

  27. Powell, J. A. & Briggs, R. T. J. Cell Biol. 99, 24a (1984).

    Google Scholar 

  28. Bekoff, A. & Betz, W. J. J. Physiol., Lond. 271, 25–40 (1977).

    Article  CAS  Google Scholar 

  29. Harary, I., Hoover, F. & Parley, B., Meth. Enzym. 32, 740–745 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beam, K., Knudson, C. & Powell, J. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320, 168–170 (1986). https://doi.org/10.1038/320168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320168a0

  • Springer Nature Limited

This article is cited by

Navigation