Skip to main content
Log in

Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

An old puzzle in protein biochemistry1 concerns the ready conversion of ovalbumin, by proteolysis, to the much more stable derivative, plakalbumin. Ovalbumin is now known to belong to the serpin superfamily2,3, most of which are serine proteinase inhibitors. We report here studies of two such members of the family, the human plasma proteins α1-antitrypsin and antithrombin, and show that they undergo a similar change in stability on selective proteolysis. This change, which is accompanied by a loss of inhibitory activity, can best be considered as an irreversible molecular transition from a native stressed (S) conformation, to a more ordered relaxed (R) form. The maintenance of the native S conformation, and hence the maintenance of inhibitory activity, is critically dependent on the integrity of an exposed loop of polypeptide. We propose that the susceptibility of this peptide loop to proteolytic cleavage gives it an incidental role as a physiological switch which allows the inactivation of individual inhibitors by specific proteolysis. The vulnerability of this exposed loop in each inhibitor also explains the pathological action of a number of venoms and toxins. In particular, the demonstration here of the cleavage of antithrombin, by leukocyte elastase, explains an observed change in blood coagulation that accompanies severe inflammation and which can result in fatal thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linderström-Lang, K. & Ottesen, M. Nature 159, 807–810 (1947).

    Article  ADS  Google Scholar 

  2. Hunt, L. T. & Dayhoff, M. O. Biochem. biophys. Res. Commun. 95, 864–971 (1980).

    Article  CAS  Google Scholar 

  3. Carrell, R. W. & Travis, J. Trends biochem. Sci. 10, 20–24 (1985).

    Article  CAS  Google Scholar 

  4. Löbermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. J. molec. Biol. 177, 531–556 (1984).

    Article  Google Scholar 

  5. Johnson, D. & Travis, J. Biochem. J. 163, 639–641 (1977).

    Article  CAS  Google Scholar 

  6. Linderström-Lang, K. & Ottesen, M. C.r. Lab. Carlsberg Ser. Chim. 26, 403–442 (1948).

    Google Scholar 

  7. Ottesen, M. C.r. Lab. Carlsberg Ser. Chim. 30, 212–269 (1958).

    Google Scholar 

  8. Wright, H. T. J. biol. Chem. 259, 14335–14336 (1984).

    CAS  PubMed  Google Scholar 

  9. Jochum, M., Lander, S., Heimburger, N. & Fritz, H. Hoppe-Seyler's Z. physiol. Chem. 362, 103–112 (1981).

    Article  CAS  Google Scholar 

  10. Owen, M. C., Brennan, S. O., Lewis, J. H. & Carrell, R. W. New Engl. J. Med. 309, 694–698 (1983).

    Article  CAS  Google Scholar 

  11. Weiss, S. J. & Regiani, S. J. clin. Invest. 73, 1297–1303 (1984).

    Article  CAS  Google Scholar 

  12. George, P. M., Vissers, M. C. M., Travis, J., Winterbourn, C. C. & Carrell, R. W. Lancet ii, 1426–1428 (1984).

    Article  Google Scholar 

  13. Brower, M. S. & Harpel, P. C. J. biol. Chem. 257, 9849–9854 (1982).

    CAS  PubMed  Google Scholar 

  14. Rosenberg, S., Barr, P. S., Najarian, R. & Hallewell, R. A. Nature 312, 77–80 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Courtney, M. et al. Nature 313, 149–151 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Carrell, R. Nature 312, 14 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Kress, L. F., Kurecki, T., Chan, S. K. & Laskowski, M. Sr J. biol. Chem. 254, 5317–5320 (1979).

    CAS  PubMed  Google Scholar 

  18. Kress, L. F., Catanese, J. & Hirayama, T. Biochim. biophys. Acta 745, 113–120 (1983).

    Article  CAS  Google Scholar 

  19. Morihara, K., Tsuzuki, H., Harada, M. & Iwata, T. J. Biochem., Tokyo 95, 795–804 (1984).

    Article  CAS  Google Scholar 

  20. Virca, G. D., Lyerly, D., Kreger, A. & Travis, J. Biochim. biophys. Acta 704, 267–271 (1982).

    Article  CAS  Google Scholar 

  21. Tanaka, T., Ohkubo, H. & Nakanishi, S. J. biol. Chem. 259, 8063–8065 (1984).

    CAS  PubMed  Google Scholar 

  22. Banda, M. J., Clark, E. J. & Werb, Z. J. clin. Invest. 75, 1758–1762 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrell, R., Owen, M. Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317, 730–732 (1985). https://doi.org/10.1038/317730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317730a0

  • Springer Nature Limited

This article is cited by

Navigation