Skip to main content
Log in

c-myc gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

There is increasing evidence that at least some of the cellular homologues to retroviral oncogenes (c-onc or proto-oncogenes) are directly linked to the control of cell growth (for a review see ref. 1). Among these, c-myc, the cellular homologue to the avian myelocytomatosis virus (MC29) oncogene, has been shown to express high levels of mRNA during early G0/G1 phase after mitogenic stimulation of T lymphocytes2 by concanavalin A or of fibroblasts by platelet-derived growth factor (PDGF)2 or serum3. An attractive model proposed for this regulation is that the c-myc gene is strongly repressed in cells arrested in the G0 phase of the cell cycle by a growth factor-sensitive represser4. We have investigated an alternative model of post-transcriptional regulation. This latter model leads to two testable predictions. First, that c-myc mRNA should be unusually unstable, which we have confirmed5. And second, that there would be a high level of constitutive expression, a situation opposite to that implied by the represser model. Here we report that c-myc gene is indeed transcribed at a high rate in G0-arrested chinese hamster lung fibroblasts, although the level of mature c-myc mRNA is barely detectable. The early and dramatic increase in c-myc mRNA levels when these resting cells are stimulated by growth factors is not accompanied by any appreciable change in the transcription rate of c-myc gene. Taken together these findings support a model of post-transcriptional regulation of c-myc expression at the level of mRNA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Land, H., Parada, L. F. & Weinberg, R. A. Science 222, 771–778 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  3. Campisi, J., Gray, H. E., Pardee, A. B., Dean, M. & Sonensheim, G. E. Cell 36, 241–247 (1984).

    Article  CAS  Google Scholar 

  4. Rabbits, T. H., Forster, A., Hamlyn, P. & Baer, R. Nature 309, 592–597 (1984).

    Article  ADS  Google Scholar 

  5. Dani, Ch. et al. Proc. natn. Acad. Aci. U.S.A. 81, 7046–7050 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Bernard, O., Cory, S., Gerondakis, S., Webb, E. & Adams, J. M. EMBO J. 2, 2375–2383 (1983).

    Article  CAS  Google Scholar 

  7. Nishikura, K. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4822–4826 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Taub, R. et al. Cell 36, 339–348 (1984).

    Article  CAS  Google Scholar 

  9. Leder, P. et al. Science 222, 765–771 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Pouysségur, J., Franchi, A. & Silvestre, P. Nature 287, 445–447 (1980).

    Article  ADS  Google Scholar 

  11. Pouysségur, J., Chambard, J. C., Franchi, A., Paris, S. & Van-Obberghen-Schilling, E. Proc. natn. Acad. Sci U.S.A. 79, 3935–3939 (1982).

    Article  ADS  Google Scholar 

  12. Fort, Ph. et al. Nucleic Acids Res. 13, 1431–1442 (1985).

    Article  CAS  Google Scholar 

  13. Greenberg, M. E. & Ziff, E. B. Nature 311, 433–438 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Kruijer, W., Cooper, J. A., Hunter, T. & Verma, I. M. Nature 312, 711–716 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Müller, R., Bravo, R. & Burckhardt, Nature 312, 716–720 (1984).

    Article  ADS  Google Scholar 

  16. Schibler, U., Hagenbüchle, O., Wellauer, P. K. & Pittet, A. C. Cell 33, 501–508 (1983).

    Article  CAS  Google Scholar 

  17. Marcu, K. B. et al. Proc. natn. Acad. Sci. U.S.A. 80, 519–523 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Miller, A. D., Curran, T. & Verma, I. M. Cell 36, 51–60 (1984).

    Article  CAS  Google Scholar 

  19. Alonso, S., Minty, A., Bourlet, Y. & Buckingham, M. J. molec. Evol. (submitted).

  20. Piechaczyk, M. et al. Nucleic Acids Res. 12, 6951–6963 (1984).

    Article  CAS  Google Scholar 

  21. Blanchard, J. M., Brissac, C. & Jeanteur, Ph. Proc. natn. Acad. Sci. U.S.A. 71, 1882–1886 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Milhaud, P., Blanchard, J. M. & Jeanteur, Ph. Biochimie 60, 1343–1346 (1978).

    Article  CAS  Google Scholar 

  23. Siebenlist, U., Hennighausen, L., Battey, J. & Leder, Ph. Cell 37, 381–391 (1984).

    Article  CAS  Google Scholar 

  24. Groudine, M. & Casimir, C. Nucleic Acids Res. 12, 1427–1446 (1984).

    Article  CAS  Google Scholar 

  25. Cleveland, D. W. & Havercroft, J. C. J. cell. Phys. 97, 919–924 (1983).

    Article  CAS  Google Scholar 

  26. Leys, E. J., Crouse, G. F. & Kellems, R. E. J. cell Biol. 99, 180–187 (1984).

    Article  CAS  Google Scholar 

  27. Bantle, J. A., Maxwell, I. M. & Hahn, W. E. Analyt. Biochem. 72, 413–427 (1976).

    Article  CAS  Google Scholar 

  28. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Leprince, D. et al. EMBO J. 2, 1073–1078 (1983).

    Article  CAS  Google Scholar 

  30. Hassouna, N., Michot, B. & Bachellerie, J. P. Nucleic Acids Res. 12, 3563–3583 (1984).

    Article  CAS  Google Scholar 

  31. Jonak, G. J. & Knight, E. Proc. natn. Acad. Sci. U.S.A. 81, 1747–1750 (1984).

    Article  ADS  CAS  Google Scholar 

  32. Dani, Ch. et al. Proc. natn. Acad. Sci. U.S.A. 82, 4896–4899 (1985).

    Article  ADS  CAS  Google Scholar 

  33. Piechaczyk, M. et al. Cell (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, JM., Piechaczyk, M., Dani, C. et al. c-myc gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature 317, 443–445 (1985). https://doi.org/10.1038/317443a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317443a0

  • Springer Nature Limited

This article is cited by

Navigation