Skip to main content
Log in

Odorant-sensitive adenylate cyclase may mediate olfactory reception

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The mechanism of the sense of smell has long been a subject for theory and speculation1–5. More recently, the notion of odorant recognition by stereospecific protein receptors has gained wide acceptance6–11, but the receptor molecules remained elusive9–15. The recognition molecules are believed to be quite diverse9,11,13–15, which would partly explain the unusual difficulties encountered in their isolation by conventional ligand-binding techniques12,13. An alternative approach would be to probe the receptors through transductory components that may be common to all receptor types7–9,12–14. Here we report the identification of one such transductory molecular component. This is an odorant-sensitive adenylate cyclase, present in very large concentrations in isolated dendritic membranes of olfactory sensory neurones. Odorant activation of the enzyme is ligand and tissue specific, and occurs only in the presence of GTP, suggesting the involvement of receptor(s) coupled to a guanine nucleotide binding protein (G-protein)15–19. The olfactory G-protein is independently identified by labelling with bacterial toxins, and found to be similar to stimulatory G-proteins in other systems17–19. Our results suggest a role for cyclic nucleotides in olfactory transduction13,20–22, and point to a molecular analogy between olfaction and visual15,16, hormone17,18 and neurotransmitter19 reception. Most importantly, the present findings reveal new ways to identify and isolate olfactory receptor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kistiakowskyi, G. B. Science 112, 154–155 (1950).

    Article  ADS  Google Scholar 

  2. Dravnieks, A. Nature 194, 245–247 (1962).

    Article  ADS  CAS  Google Scholar 

  3. Amoore, J. E. Nature 198, 271–272 (1963).

    Article  ADS  CAS  Google Scholar 

  4. Davies, J. T. J. theor. Biol. 8, 1–7 (1965).

    Article  CAS  Google Scholar 

  5. Wright, R. H., Hughes, J. R. & Hendrix, D. E. Nature 216, 404–406 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Amoore, J. E. Nature 214, 1095–1097 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Getchell, M. L. & Gesteland, R. C. Proc. natn. Acad. Sci. U.S.A. 69, 1494–1498 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Menevese, A., Dodd, G. H. & Poynder, M. T. Biochem. J. 176, 845–854 (1978).

    Article  Google Scholar 

  9. Goldberg, S. J., Turpin, J. & Price, S. Chem. Senses Flavor 4, 207–214 (1979).

    Article  CAS  Google Scholar 

  10. Rhein, L. D. & Cagan, R. H. Proc. natn. Acad. Sci. U.S.A. 77, 4412–4416 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Chen, Z. & Lancet, D. Proc. natn. Acad. Sci. U.S.A. 81, 1859–1863 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Price, S. in Biochemistry of Taste and Olfaction (eds Cagan, R. H. & Kare, M. R.) 69–84 (Academic, New York, 1980).

    Google Scholar 

  13. Dodd, G. & Persaud, K. in Biochemistry of Taste and Olfaction (eds Cagan, R. H. & Kare, M. R.) 333–357 (Academic, New York, 1980).

    Google Scholar 

  14. Lancet, D. Trends Neurosci. 7, 35–36 (1984); A. Rev. Neurosci. 9 (in the press).

    Article  Google Scholar 

  15. Stryer, L., Hurley, J. B. & Fung, K.-K. Trends biochem. Sci. 6, 245–247 (1981).

    Article  CAS  Google Scholar 

  16. O'Brien, D. F. Science 218, 961–966 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Rodbell, M. Nature 284, 17–22 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Gilman, A. G. Cell 36, 577–579 (1984).

    Article  CAS  Google Scholar 

  19. Schramm, M. & Selinger, Z. Science 225, 1350–1356 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Kurihara, K. & Koyama, N. Biochem. biophys. Res. Commun. 48, 30–34 (1972).

    Article  CAS  Google Scholar 

  21. Minor, A. V. & Sakina, N. L. Neirofiziologiya 5, 415–422 (1973).

    CAS  Google Scholar 

  22. Menevse, A., Dodd, G. & Poynder, M. T. Biochem. biophys. Res. Commun. 77, 671–677 (1977).

    Article  CAS  Google Scholar 

  23. Sutherland, E. W., Rall, T. W. & Menon, T. J. biol. Chem. 237, 1220–1227 (1962).

    CAS  PubMed  Google Scholar 

  24. Robinson, G. A., Butcher, R. W. & Sutherland, E. W. Cyclic AMP (Academic, New York, 1971).

    Google Scholar 

  25. Revial, M. F., Sicard, G., Duchamp, A. & Holley, A. Chem. Senses 7, 175–191 (1982).

    Article  CAS  Google Scholar 

  26. Mozell, M. M. in Handbook of Sensory Physiology Vol. 4(1) (ed. Beidler, L. M.) 205–215 (Springer, Berlin, 1971).

    Google Scholar 

  27. Ottoson, D. in Handbook of Sensory Physiology Vol. 4(1) (ed. Beidler, L. M.) 95–131 (Springer, Berlin, 1971).

    Google Scholar 

  28. Gordon, L. M. et al. J. biol. Chem. 255, 4519–4527 (1980).

    CAS  PubMed  Google Scholar 

  29. Getchell, T. V. & Shepherd, G. M. J. Physiol., Lond. 282, 521–540 (1978).

    Article  CAS  Google Scholar 

  30. Weast, R. C. & Astle, M. J. (eds) Handbook of Chemistry and Physics, D-203 (CRC Press, Boca Raton, 1979-80).

  31. Northup, J. K., Smigel, M. D. & Gilman, A. G. J. Biol Chem. 257, 11416–11423 (1982).

    CAS  PubMed  Google Scholar 

  32. Cassel, D. & Selinger, Z. Biochem. biophys. Res. Commun. 77, 868–873 (1977).

    Article  CAS  Google Scholar 

  33. Abood, M. E., Hurley, J. B., Pappone, M.-C., Bourne, H. R. & Stryer, L. J. biol. Chem. 257, 10540–10543 (1982).

    CAS  PubMed  Google Scholar 

  34. Rebois, R. V., Beckner, S. K., Brady, R. O. & Fishman, P. H. Proc. natn. Acad. Sci. U.S.A. 80, 1275–1279 (1983).

    Article  ADS  CAS  Google Scholar 

  35. Cerione, R. A., Strulovici, B., Benowic, J. L., Lefkowitz, R. J. & Caron, M. G. Nature 306, 562–566 (1983).

    Article  ADS  CAS  Google Scholar 

  36. Chen, Z., Ophir, D. & Lancet, D. Soc. Neurosci. Abstr. 10 (1984).

  37. Salomon, Y. Adv. Cyclic Nucleotide Res. 10, 35–55 (1979).

    CAS  PubMed  Google Scholar 

  38. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  39. Schleifer, L. S., Gerrison, J. C., Sternweis, P. C., Northup, J. K. & Gilman, A. G. J. biol. Chem. 255, 2641–2644 (1980).

    CAS  PubMed  Google Scholar 

  40. Gill, M. D. in ADP-Ribosylation Reactions (eds Hayaishi, O. & Ueda, K.) 593–621 (Academic, New York, 1982).

    Google Scholar 

  41. Sternweis, P. C. & Robishaw, J. D. J. biol. Chem. 259, 13806–13813 (1984).

    CAS  PubMed  Google Scholar 

  42. Neer, E. J., Lok, J. & Wolf, L. G. J. biol. Chem. 259, 14222–14229 (1984).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pace, U., Hanski, E., Salomon, Y. et al. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316, 255–258 (1985). https://doi.org/10.1038/316255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316255a0

  • Springer Nature Limited

This article is cited by

Navigation