Skip to main content

Advertisement

Log in

Adaptation of photosynthetic apparatus of marine ultraphytoplankton to natural light fields

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The discovery of widely distributed populations of chroococcoid marine cyanobacteria (Synechococcus spp.) deep in the water column has focused attention on the autotrophic potential of small (<10 µm) size classes of marine phytoplankton1–5. These organisms contain light-harvesting pigments which specifically absorb in the blue and green regions of the spectrum6–11. Despite the fact that sea water acts as a monochromatic filter, allowing only the blue and blue-green wavelengths to penetrate12, essentially all estimates of the photosynthetic rate of ultraphytoplankton at depth have ignored the changing spectral composition of the natural light field and simulated only the in situ light intensity4,5,13. Here I show that the spectral composition of available light must be considered in estimates of water column productivity and that the depth of the euphotic zone varies between different ultraphytoplankton strains depending on the composition and organization of the photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waterbury, J. B., Watson, S. W., Guillard, R. R. L. & Brand, L. E. Nature 277, 293–294 (1979).

    Article  ADS  Google Scholar 

  2. Johnson, P. W. & Sieburth, J. McN, Limnol. Oceanogr. 24, 929–935 (1979).

    ADS  Google Scholar 

  3. Krempin, D. W. & Sullivan, C. W. Can. J. Microbiol. 27, 1341–1344 (1981).

    Article  Google Scholar 

  4. Li, W. K. W. et al. Science 219, 292–295 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Platt, T., Subba Rao, D. V. & Irwin, B. Nature 301, 702–704 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Wood, A. M. EOS 63, 960 (1982).

    Article  Google Scholar 

  7. Alberte, R. S., Wood, A. M., Kursar, T. A. & Guillard, R. R. L. Pl. Physiol. 75, 732–739 (1984).

    Article  CAS  Google Scholar 

  8. Kursar, T. A., Swift, H. & Alberte, R. S. Proc. Natn. Acad. Sci. U.S.A. 78, 6888–6892 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Ong, L. J., Glazer, A. N. & Waterbury, J. B. Science 244, 80–83 (1984).

    Article  ADS  Google Scholar 

  10. Wood, A. M. J. Phycol. 15, 330–332 (1979).

    Article  CAS  Google Scholar 

  11. Foss, P., Guillard, R. R. L. & Liaaen-Jensen, S. Phytochemistry 23, 1629–1633 (1984).

    Article  CAS  Google Scholar 

  12. Jerlov, N. G. Marine Optics, 231 (Elsevier, Amsterdam, 1976).

    Google Scholar 

  13. Bienfang, P. K. & Takahashi, M. Mar. Biol. 76, 213–218 (1983).

    Article  CAS  Google Scholar 

  14. Jenkin, P. M. J. mar. Biol. Ass. U.K. 22, 301–343 (1937).

    Article  CAS  Google Scholar 

  15. Gantt, E. A. Rev. Pl. Physiol. 32, 327–347 (1981).

    Article  CAS  Google Scholar 

  16. Glazer, A. N. & Hixson, C. S. J. biol. Chem. 252, 32–42 (1977).

    CAS  PubMed  Google Scholar 

  17. Wood, A. M. et al. Limnol. Oceanogr. (in the press).

  18. Chapman, D. J., Cole, W. J. & Siegelman, H. W. Am. J. Bot. 55, 314–316 (1968).

    Article  CAS  Google Scholar 

  19. Glazer, A. N. et al. Proc. natn. Acad. Sci. U.S.A. 73, 428–431 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Glazer, A. N. & Apell, G. S. FEMS Lett. 1, 113–116 (1977).

    Article  CAS  Google Scholar 

  21. Zuber, H. Ber. dt. bot. Ges. 91 S, 459–475 (1978).

    CAS  Google Scholar 

  22. MacColl, R. & Burns, D. S. Trends biochem. Sci. 4, 44–47 (1979).

    Article  CAS  Google Scholar 

  23. Tandeau de Marsac, N. Bull. Inst. Pasteur, Paris 81, 201–254 (1983).

    CAS  Google Scholar 

  24. Glazer, A. N. A. Rev. Microbiol. 36, 173–198 (1982).

    Article  CAS  Google Scholar 

  25. Engelmann, T. W. Bot. Ztg. 41, 1–29 (1883).

    Google Scholar 

  26. Gaidukov, N. Ber. dt. bot. Ges. 21, 484–493 (1903).

    CAS  Google Scholar 

  27. Fogg, G. E., Steward, W. D. P., Fay, P. & Walsby, A. E. The Blue-Green Algae, 459 (Academic, London, 1973).

    Google Scholar 

  28. Ramus, J. J. Phycol. 9, 173–178 (1983).

    Article  Google Scholar 

  29. Fujita, Y. & Shimura, S. Pl. Cell Physiol., Tokyo 15, 939–942 (1974).

    CAS  Google Scholar 

  30. Johnson, P. W. & Sieburth, J. McN. J. Phycol. 8, 318–327 (1982).

    Article  Google Scholar 

  31. Faruyo, K. & Marumo, R. J. Plankton Res. 5, 393–406 (1983).

    Article  Google Scholar 

  32. Takahashi, M. & Hori, T. Mar. Biol. 79, 177–186 (1984).

    Article  CAS  Google Scholar 

  33. Takahashi, M. & Bienfang, P. K. Mar. Biol. 76, 203–211 (1983).

    Article  CAS  Google Scholar 

  34. Murphy, L. S. & Haugen, E. M. Limnol. Oceanogr. 30, 47–58 (1985).

    Article  ADS  Google Scholar 

  35. Glover, H. W., Phinney, D. A. & Yentsch, C. S. Biol. Oceanogr. 3, 223–248 (1985).

    Google Scholar 

  36. Guillard, R. R. L. & Ryther, J. H. Can. J. Microbiol. 8, 229–239 (1962)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, A. Adaptation of photosynthetic apparatus of marine ultraphytoplankton to natural light fields. Nature 316, 253–255 (1985). https://doi.org/10.1038/316253a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316253a0

  • Springer Nature Limited

This article is cited by

Navigation