Skip to main content
Log in

Structure of the ammonia synthesis catalyst

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The synthesis of ammonia from hydrogen and nitrogen over a reduced iron oxide catalyst is so well known1–5 and so widely used (current world capacity is close to 100 × 106 tons per year) that it may seem surprising that the mode of operation of the catalytic remains enigmatic. That both H2 and N2 must first dissociate at the catalyst surface is beyond dispute, but there is debate as to the role of various promoters (Al, K, Ca) which greatly improve the catalytic performance when added to the precursor Fe3O4. Although it is widely accepted that regions of paracrystallinity exist within the catalyst, no one has questioned its overall crystal-linity. In this work, which entails in situ X-ray diffractometry, we provide evidence that the active catalyst contains substantial amounts of a non-crystalline phase. Without promoter, reduction of Fe3O4 in the same conditions yields only crystalline α-iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perman, E. P. Proc. R. Soc. A76, 167–174 (1905).

    Article  ADS  CAS  Google Scholar 

  2. Bosch, C., Mittasch, A., Stern, G. & Wolf, H. German Patents (DRP) 249, 447; 258, 146 (January 1910).

  3. Mittash, A. Adv. Catal. 2, 81–104 (1950).

    Google Scholar 

  4. Nielsen, H. Catal. Rev. Sci. Engng 23, 17–51 (1981).

    Article  CAS  Google Scholar 

  5. Timm, B. Proc. 8th int. Congr. Catal., Berlin Vol. 1, 7 (Verlag Chemie, Berlin, 1984).

    Google Scholar 

  6. Ertl, G., Lee, S. B. & Weiss, M. Surf. Sci. 114, 527–545 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Ozaki, A. & Aika, K. in Catalysis Science and Technology Vol. 1 (eds Anderson, J. R. & Boudart, M.) (Springer, Berlin, 1981).

    Google Scholar 

  8. Ludwiczek, H. et al. J. Catal. 51, 326–337 (1978).

    Article  CAS  Google Scholar 

  9. Borghard, W. S. & Boudart, M. J. Catal. 80, 194–206 (1983).

    Article  CAS  Google Scholar 

  10. Spencer, N. D., Schoonmaker, R. C. & Somorjai, G. A. J. Catal. 74, 129–135 (1982).

    Article  CAS  Google Scholar 

  11. Bozso, F., Ertl, G., Grunze, M. & Weiss, M. J. Catal. 49, 18–41 (1977); 50, 519–529 (1977).

    Article  CAS  Google Scholar 

  12. Tennakoon, D. T. B. et al. Clay Miner. 18, 357 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Long, R. W. US Patent, 2, 483, 500–511 (1949).

  14. Mosesman, M. A. J. Am. chem. Soc. 73, 5635–5689 (1951).

    Article  CAS  Google Scholar 

  15. Elliot, S. R. Physics of Amorphous Materials, 32 (Longmans, London, 1984).

    Google Scholar 

  16. Ertl, G., Prigge, D., Schlogl, R. & Weiss, M. J. Catal. 79, 359–377 (1983).

    Article  CAS  Google Scholar 

  17. Jones, W. in Characterization of Catalysts (eds Thomas, J. M. & Lambert, R. M.) 114 (Wiley, New York, 1980).

    Google Scholar 

  18. Jones, W., Schlogl, R. & Thomas, J. M. JCS chem. Commun. 464–466 (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayment, T., Schlögl, R., Thomas, J. et al. Structure of the ammonia synthesis catalyst. Nature 315, 311–313 (1985). https://doi.org/10.1038/315311a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315311a0

  • Springer Nature Limited

This article is cited by

Navigation