Skip to main content
Log in

Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Interaction of ligands with ‘Ca2+-mobilizing’ receptors is thought to result in the generation of two second messengers, inositol trisphosphate and diacylglycerol, from a common substrate, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) (refs 1, 2), a component of plasma membranes3,4. It is not known how the occupation of such receptors is translated into the activation of the catalytic unit polyphosphoinositide (PPI) phosphodiesterase, and then to cellular activation, but our recent experiments suggest that GTP regulatory proteins may be involved. In mast cells, non-hydrolysable analogues of GTP introduced and then trapped in the cytosol are able to substitute for external ligands in inducing exocytosis, a well-defined Ca2+-dependent process5, suggesting that guanine nucleotide regulatory proteins may act by stimulating the catalytic activity of the PPI phosphodiesterase. We now provide evidence that mast cell secretion is inhibited by internalized neomycin, a compound known to interact with PPI6. We also show that the PPI phosphodiesterase of human neutrophil plasma membranes can be activated simply by adding GTP analogues in the presence of concentrations of Ca2+ that pertain in unstimulated cells. These findings strongly support the idea that the coupling factor linking receptor and PPI phosphodiesterase is a guanine nucleotide binding protein analogous to those involved in the activation and inhibition of adenylate cyclase7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michell, R. H. Trends pharmac. Sci. 8, 263–265 (1983).

    CAS  Google Scholar 

  2. Berridge, M. J. Biochem. J. 220, 345–360 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Downes, P. & Michell, R. H. Cell Calcium 3, 467–502 (1982).

    CAS  PubMed  Google Scholar 

  4. Cockcroft, S., Taylor, J. & Judah, J. D. Biochim. biophys. Acta (in the press).

  5. Gomperts, B. D. Nature 306, 64–66 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Schacht, J. J. Lipid Res. 19, 1063–1067 (1978).

    CAS  PubMed  Google Scholar 

  7. Rodbell, M. Nature 284, 17–22 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Bennett, J. P., Cockcroft, S. & Gomperts, B. D. J. Physiol., Lond. 317, 335–345 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cockcroft, S., Baldwin, J. M. & Allan, D. Biochem. J. 221, 477–482 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Downes, C. P. & Michell, R. H. Biochem. J. 202, 53–58 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Downes, C. P., Mussat, M. C. & Michell, R. H. Biochem. J. 203, 169–177 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Remarks Concerning the Stability of GDP, GTP and dGTP (Boehringer Mannheim technical leaflet, 1984).

  13. Anderson, Q. S. & Murphy, R. C. J. Chromat. 121, 251–262 (1976).

    Article  CAS  Google Scholar 

  14. Cockcroft, S. Biochim. biophys. Acta 795, 37–46 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Hyslop, P. A. et al. FEBS Lett. 166, 165–169 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Houslay, M. D. Trends biochem. Sci. 9, 39–40 (1984).

    Article  CAS  Google Scholar 

  17. Nakamura, T. & Ui, M. FEBS Lett. 173, 414–418 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Okajima, F. & Ui, M. J. biol. Chem. 259, 13863–13871 (1984).

    CAS  PubMed  Google Scholar 

  19. Kaziro, Y. Biochim. biophys. Acta 505, 95–127 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Stryer, L. Cold Spring Harb. Symp. quant. Biol. 48, 841–852 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Heyworth, C. M., Rawal, S. & Houslay, M. D. FEBS Lett. 154, 87–91 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Heyworth, C. M., Wallace, A. V. & Houslay, M. D. Biochem. J. 214, 99–110 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McGrath, J. P., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Nature 310, 644–649 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Newbold, R. Nature 310, 628–629 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Bennett, J. P., Caswell, A. H., Cockcroft, S. & Gomperts, B. D. Biochem. J. 208, 801–808 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Downes, C. P. & Michell, R. H. Biochem. J. 198, 133–140 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockcroft, S., Gomperts, B. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314, 534–536 (1985). https://doi.org/10.1038/314534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314534a0

  • Springer Nature Limited

This article is cited by

Navigation