Skip to main content

Advertisement

Log in

Sr isotope composition of sea water over the past 75 Myr

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The 87Sr/86Sr ratio of ancient seawater, as recorded in marine carbonates, is an important tracer of long-term variations in ocean chemistry1–5. However, the Sr isotope balance of the oceans has been difficult to constrain; consequently, attempts to evaluate the temporal 87Sr/86Sr changes have been largely qualitative. To constrain the causes of these variations we have measured 87Sr/86Sr ratios in carefully cleaned unrecrystallized foraminifera from DSDP sites 21 and 357. The data presented here have been quantitatively modelled taking advantage of recent advances in understanding of the Sr geochemical cycle. They suggest that whereas hydrothermal fluxes and carbonate recycling are of major importance in defining the marine 87Sr/86Sr ratio, the major control over its variations through the Cenozoic has been changes in the isotope composition of Sr derived from the weathering of silicate rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burke, W. H. et al. Geology 10, 516–519 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Peterman, Z. E., Hedge, C. E. & Tourtelot, H. A. Geochim. cosmochim. Acta 34, 105–120 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Dasch, E. J. & Biscaye, P. E. Earth planet. Set. Lett. 11, 201–204 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Veizer, J. & Compston, W. Geochim. cosmochim. Acta 38, 1461–1484 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Brass, G. W. Geochim. cosmochim. Acta 40, 721–730 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Armstrong, R. L. Nature phys. Sci. 230, 132–133 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Spooner, E. T. C. Earth planet. Sci. Lett. 31, 167–174 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Albarede, F., Michard, A., Minster, J. F. & Michard, G. Earth planet. Sci. Lett. 55, 229–236 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Elderfield, H. & Greaves, M. J. Geochim. cosmochim. Acta 45, 2201–2212 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Edmond, J. M. et al. Earth planet. Sci. Lett. 46, 1–18 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Bender, M. L., Hess, J., Schilling, J. G. & Waggoner, D. G. Trans. Am. geophys. Un. 63, 1014 (1982).

    Google Scholar 

  12. Mottl, M. J. Bull. geol. Soc. Am. 94, 161–180 (1983).

    Article  CAS  Google Scholar 

  13. Sleep, N. H. Hydrothermal Processes at Seafloor Spreading Centers (Plenum, New York, 1983).

    Google Scholar 

  14. Garrels, R. M. & MacKenzie, F. T. Evolution of Sedimentary Rocks (Norton, New York, 1971).

    Google Scholar 

  15. Elderfield, H. & Gieskes, J. M. Nature 300, 493–497 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Wolery, T. J. & Sleep, N. H. J. Geol. 84, 249–275 (1970).

    Article  ADS  Google Scholar 

  17. Anderson, R. N., Langseth, M. G. & Sclater, J. G. J. geophys. Res. 3391–3409 (1977).

    Article  ADS  Google Scholar 

  18. Sclater, J. G., Parsons, B. & Jaupart, C. J. J. geophys. Res. 86, 11535–11552 (1981).

    Article  ADS  Google Scholar 

  19. Jenkins, W. J., Edmond, J. M. & Corliss, J. B. Nature 272, 156–158 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Hart, S. R. & Staudigel, H. Earth planet. Sci. Lett. 58, 202–212 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Seyfried, W. E., Janecky, D. R. & Mottl, M. J. Geochim. cosmochim. Acta. 48, 557–569 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Sleep, N. H., Morton, J. L., Burns, L. E. & Wolery, T. J. Hydrothermal Processes at Seafloor Spreading Centers (Plenum, New York, 1983)

    Google Scholar 

  23. Stoffyn-Egli, P. & Mackenzie, F. T. Geochim. cosmochim. Acta 48, 859–872 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Wadleigh, M. A., Veizer, J. & Brooks, C. Geochim. cosmochim. Acta (in the press).

  25. Dasch, E. J. Geochim. cosmochim. Acta 33, 1521–1552 (1969).

    Article  ADS  CAS  Google Scholar 

  26. Pitman, W. C. & Talwani, M. Bull. geol. Soc. Am. 83, 619–646 (1972).

    Article  Google Scholar 

  27. Hays, J. D. & Pitman, W. C. Nature 246, 18–82 (1973).

    Article  ADS  Google Scholar 

  28. Delaney, M. L. thesis, Massachusetts Inst. Technology (1983).

  29. Pitman, W. C. Bull. geol. Soc. Am. 89, 1389–1403 (1978).

    Article  Google Scholar 

  30. Parsons, B. J. geophys. Res. 87, 289–302 (1982).

    Article  ADS  Google Scholar 

  31. Southam, J. R. & Hay, W. W. J. Geophys. Res. 82, 3825–3842 (1977).

    Article  ADS  CAS  Google Scholar 

  32. Berner, R. A., Lasaga, A. C. & Garrels, R. M. Am. J. Sci. 283, 641–683 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Holland, H. D. The Chemistry of the Atmosphere and the Oceans (Wiley, New York, 1978).

    Google Scholar 

  34. Vail, P. R., Mitchum, R. M. & Thompson, S. Am. Ass. Petrol. Geol. 26, 83–97 (1978).

    Google Scholar 

  35. McCulloch, M. T. & Wasserburg, G. J. Science 200, 1003–1011 (1978).

    Article  ADS  CAS  Google Scholar 

  36. Ronov, A. B. Geochim. Int. 13, 172–195 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, M., Elderfield, H. Sr isotope composition of sea water over the past 75 Myr. Nature 314, 526–528 (1985). https://doi.org/10.1038/314526a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314526a0

  • Springer Nature Limited

This article is cited by

Navigation