Skip to main content
Log in

Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

During development of the vertebrate nervous system, there is a widespread reduction in the number of axons innervating target cells1. This phenomenon, often called synapse elimination, has been particularly well studied at the neuromuscular junction of developing twitch muscle fibres2,3: following a period of polyneuronal innervation, axonal branches are retracted, usually leaving each twitch fibre endplate innervated by only one axon. Here we describe a hew technique for the study of synapse elimination—activity-mediated uptake of fluorescent probes. These probes selectively and supravitally label all the terminals of individual axons. The technique is used here in adult and embryonic snakes to study the innervation pattern of a thin muscle containing two fibre types: twitch fibres, which are fast-contracting and have propagated action potentials, and tonic fibres, which are slow-contracting and lack action potentials. We find that twitch muscle fibres, as expected, eliminate all polyneuronal innervation during development; in contrast, tonic fibre endplates remain polyneuronally innervated into adulthood. The persistence of multiple innervation at tonic endplates may be related to the lack of action potential activity in tonic muscle fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purves, D. & Lichtman, J. W. Science 210, 153–157 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Van Essen, D. C. in Neuronal Development (ed. Spitzer, N. C.) 333–376 (Plenum, New York, 1982).

    Book  Google Scholar 

  3. Brown, M. C. et al. in Development of the Nervous System (eds Garrod, D. R. & Feldman, J. D.) 245–262 (Cambridge University Press, 1981).

    Google Scholar 

  4. Heuser, J. E. & Reese, T. S. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  Google Scholar 

  5. Yoshikami, D. & Okun, L. M. Nature 310, 54–56 (1984).

    Article  ADS  Google Scholar 

  6. Wilcox, M. & Franceschini, N. Science 225, 851–854 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Wilkinson, R. S. & Lichtman, J. W. J. Neurosci. (submitted).

  8. Córdoba, F. et al. J. Physiol., Lond. 291, 73–74 p (1979).

    Google Scholar 

  9. Bennett, M. R. & Pettigrew, A. G. J. Physiol., Lond. 241, 515–545 (1974).

    Article  CAS  Google Scholar 

  10. Hess, A. Physiol. Rev. 50, 40–62 (1970).

    Article  CAS  Google Scholar 

  11. Zehr, D. R. Copeia 2, 322–329 (1962).

    Article  Google Scholar 

  12. Angaut-Petit, D. & Mallart, A. J. Physiol., Lond. 289, 203–218 (1979).

    Article  CAS  Google Scholar 

  13. Benoit, P. & Changeux, J.-P. Brain Res. 99, 354–358 (1975).

    Article  CAS  Google Scholar 

  14. Riley, D. A. Brain Res. 143, 162–167 (1978).

    Article  CAS  Google Scholar 

  15. O'Brien, R. A. D. et al. J. Physiol., Lond. 282, 571–582 (1978).

    Article  CAS  Google Scholar 

  16. Thompson, W. et al. Neuroscience 4, 271–278 (1979).

    Article  CAS  Google Scholar 

  17. Brown, M. C. et al. J. Physiol., Lond. 318, 355–364 (1981).

    Article  CAS  Google Scholar 

  18. Duxson, M. J. J. Neurocytol. 11, 395–408 (1982).

    Article  CAS  Google Scholar 

  19. Thompson, W. Nature 302, 614–616 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Ridge, R. M. A. P. & Betz, W. J. J. Neurosci. 4, 2614–2620 (1984).

    Article  CAS  Google Scholar 

  21. Changeux, J.-P. & Danchin, A. Nature 264, 705–712 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Purves, D. & Lichtman, J. W. Principles of Neural Development (Sinauer, Sunderland, Massachusetts, 1984).

    Google Scholar 

  23. Johnson, D. G. et al. J. immun. Meth. 43, 349–350 (1981).

    Article  CAS  Google Scholar 

  24. Ridge, R. M. A. P. J. Physiol., Lond. 217, 393–418 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lichtman, J., Wilkinson, R. & Rich, M. Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes. Nature 314, 357–359 (1985). https://doi.org/10.1038/314357a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314357a0

  • Springer Nature Limited

This article is cited by

Navigation