Skip to main content
Log in

Ice-free cryopreservation of mouse embryos at −196 °C by vitrification

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The failure of complex mammalian organs, such as the kidney, to function following freezing to low temperatures is thought to be due largely to mechanical disruption of the intercellular architecture by the formation of extracellular ice1–5. Classical approaches to the avoidance of ice formation through the imposition of ultra-rapid cooling and warming rates6–8 or by gradual depression of the equilibrium freezing point during cooling to −80 °C9–13 have not been adequate. An alternative approach14–16 relies on the ability of highly concentrated aqueous solutions of cryoprotective agents to supercool to very low temperatures. At sufficiently low temperatures, these solutions become so viscous that they solidify without the formation of ice, a process termed vitrification. When embryo suspensions are cryopreserved using conventional procedures, this supercooling behaviour allows intracellular vitrification, even in the presence of extracellular ice17–20. We have therefore used mouse embryos to examine the feasibility of obtaining high survival following vitrification of both the intra- and extracellular solutions and report here that in properly controlled conditions embryos seem to survive in high proportions after cryopreservation in the absence of ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pegg, D. E., Jacobsen, I. A., Armitage, W. J. & Taylor, M. J. in Organ Preservation Vol. 2 (eds Pegg, D. E. & Jacobsen, I. A.) 132–144 (Churchill Livingstone, Edinburgh, 1979).

    Google Scholar 

  2. Fahy, G. M. Cryobiology 18, 550–570 (1981).

    Article  CAS  Google Scholar 

  3. Pegg, D. E. & Diaper, M. P. in Organ Preservation, Basic and Applied Aspects (eds Pegg, D. E., Jacobsen, I. A. & Halasz, N. A.) 389–393 (MTP, Lancaster, 1982).

    Book  Google Scholar 

  4. Hunt, C. J. Cryobiology 21, 385–402 (1984).

    Article  CAS  Google Scholar 

  5. Jacobsen, I. A. & Pegg, D. E. Cryobiology 21, 377–384 (1984).

    Article  CAS  Google Scholar 

  6. Luyet, B. J. Biodynamica 1, P. 29, 1–14 (1937).

    Google Scholar 

  7. Luyet, B. J. & Gehenio, P. M. Life and Death at Low Temperatures (Biodynamica, Normandy, 1940).

    Google Scholar 

  8. Rapatz, G. & Luyet, B. Biodynamica 10, 193–210 (1968).

    CAS  PubMed  Google Scholar 

  9. Farrant, J. Nature 205, 1284–1287 (1965).

    Article  ADS  CAS  Google Scholar 

  10. Elford, B. C. & Walter, C. A. Nature 236, 58–60 (1972).

    Article  CAS  Google Scholar 

  11. Elford, B. C. & Walter, C. A. Cryobiology 9, 82–100 (1972).

    Article  CAS  Google Scholar 

  12. Fahy, G. M. Cryobiology 17, 371–388 (1980).

    Article  CAS  Google Scholar 

  13. Kemp, E., Clark, P. B., Anderson, C. K. & Parsons, F. M. Proc. Eur. Dialysis Transplant Ass. 3, 236–240 (1966).

    Google Scholar 

  14. Fahy, G. M. & Hirsch, A. in Organ Preservation, Basic and Applied Aspects (eds Pegg, D. E., Jacobsen, I. A. & Halasz, N. A.) 399–404 (MTP, Lancaster, 1982).

    Book  Google Scholar 

  15. MacFarlane, D. R., Angell, C. A. & Fahy, G. M. Cryo-Letters 2, 353–358 (1981).

    CAS  Google Scholar 

  16. Fahy, G. M., MacFarlane, D. R., Angell, C. A. & Meryman, H. T. Cryobiology 21, 407–426 (1984).

    Article  CAS  Google Scholar 

  17. Leibo, S. P., McGrath, J. J. & Cravalho, E. G. Cryobiology 15, 257–271 (1978).

    Article  CAS  Google Scholar 

  18. Rall, W. F., Reid, D. S. & Farrant, J. Nature 286, 511–514 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Rall, W. F. in Frozen Storage of Laboratory Animals (ed. Zeilmaker, G. H.) 33–44 (Fischer, New York, 1981).

    Google Scholar 

  20. Rall, W. F., Reid, D. S. & Polge, C. Cryobiology 21, 106–121 (1984).

    Article  CAS  Google Scholar 

  21. Boutron, P., Delage, D., Rousit, B. & Korber, C. Cryobiology 19, 550–564 (1982).

    Article  CAS  Google Scholar 

  22. Rasmussen, D. & Luyet, B. Biodynamica 11, 33–44 (1970).

    CAS  PubMed  Google Scholar 

  23. Rasmussen, D. H. & MacKenzie, A. P. Nature 220, 1315–1317 (1968).

    Article  ADS  CAS  Google Scholar 

  24. Angell, C. A. & Sare, E. J. Cryo-Letters 1, 257–260 (1980).

    CAS  Google Scholar 

  25. MacKenzie, A. P. in Water Relations of Foods (ed. Duckworth, R. B.) 477–503 (Academic, London, 1975).

    Book  Google Scholar 

  26. Takahashi, T. et al. Cryobiology (submitted).

  27. Burdette, E. C. in Organ Preservation for Transplantation (eds Karow, A. M. Jr & Pegg, D. E.) 213–259 (Dekker, New York, 1981).

    Google Scholar 

  28. Burdette, E. C., Wiggins, S., Brown, R. & Karow, A. M. Jr Cryobiology 17, 393–402 (1980).

    Article  CAS  Google Scholar 

  29. Rall, W. F., Mazur, P. & McGrath, J. J. Biophys. J. 41, 1–12 (1983).

    Article  CAS  Google Scholar 

  30. Dulbecco, R. & Vogt, M. J. exp. Med. 99, 167–182 (1954).

    Article  CAS  Google Scholar 

  31. Whittingham, D. G. Nature 233, 125–126 (1971).

    Article  ADS  CAS  Google Scholar 

  32. Brinster, R. L. in Growth, Nutrition, and Metabolism of Cells in Culture (eds Rothblat, G. H. & Cristofalo, V. J.) 251–286 (Academic, New York, 1972).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rall, W., Fahy, G. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313, 573–575 (1985). https://doi.org/10.1038/313573a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313573a0

  • Springer Nature Limited

This article is cited by

Navigation