Skip to main content
Log in

Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurones by depletion of hypothalamic adrenaline

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In response to stress, adrenocorticotropic hormone (ACTH) is released by corticotrophs in the anterior pituitary under the control of several central and peripheral factors1,2 including corticotropin-releasing factor (CRF), which was recently isolated from the brain and sequenced3. Immunocytochemical studies have shown that most of the CRF-containing cell bodies that project to the median eminence are present in the hypothalamic paraventricular nucleus (PVN)4–6. A dense PNMT(phenylethanolamine-N-methyltrans-ferase)-containing fibre network was also observed in the same region7,8—PNMT is the final enzyme in the biosynthesis of adrenaline9 and has been demonstrated in the brain10. In the present study we found an association of adrenergic nerve fibres and CRF neurones by immunohistochemistry using antisera to PNMT and CRF. To examine the functional significance of the adrenergic projection to the PVN, we blocked the synthesis of adrenaline using a specific inhibitor of PNMT. The depletion of adrenaline resulted in an increase in CRF immunoreactivity. The present results suggest that, as well as catecholamines which regulate ACTH release at the anterior pituitary level via a β2-adrenergic receptor mechanism9, central catecholamines (mainly adrenaline) also affect ACTH release through their action on CRF cells. Peripheral catecholamines seem to have a direct stimulatory effect on the pituitary corticotroph cells11, whereas the present findings suggest that central adrenaline-containing neurones have an inhibitory role in the physiological response to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ganong, W. F. Brain-Endocrine Interaction: Median Eminence: Structure and Function (eds Knigge, J., Scott, D. S. & Weindl, A.) 254–266 (Karger, Basel, 1972).

    Google Scholar 

  2. Jones, M. T. The Endocrine Hypothalamus (eds Jeffcoate, S. L. & Hutchinson, J. S. H.) 386–419 (Academic, New York, 1978).

    Google Scholar 

  3. Vale, W., Spiess, J., Rivier, C. & Rivier, J. Science 213, 1394–1396 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bloom, F. E., Battenberg, E. L. F., Rivier, J. & Vale, W. Regul. Peptides 4, 43–48 (1982).

    Article  CAS  Google Scholar 

  5. Cummings, S., Elde, R., Ells, J. & Lindall, A. J. Neuroscience 3, 1355–1368 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swanson, L. W., Sawchenko, P. E., Rivier, J. & Vale, W. Neuroendocrinology 36, 165–186 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Hokfelt, T., Fuxe, K., Goldstein, M. & Johansson, O. Brain Res. 66, 235–251 (1974).

    Article  CAS  Google Scholar 

  8. Swanson, L. et al. J. comp. Neurol. 196, 271–285 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Axelrod, J. J. biol. Chem. 237, 1657–1660 (1962).

    CAS  PubMed  Google Scholar 

  10. Saavedra, J., Palkovits, M., Brownstein, M. J. & Axelrod, J. Nature 248, 695–696 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Mezey, E., Reisine, T., Palkovits, M., Brownstein, M. J. & Axelrod, J. Proc. natn. Acad. Sci. U.S.A. 80, 6728–6731 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Ganong, W. F. Fedn Proc. 39, 2923–2930 (1980).

    CAS  Google Scholar 

  13. Weiner, R. & Ganong, W. F. Phys. Rev. 58, 905–976 (1978).

    CAS  Google Scholar 

  14. Roth, K. A. et al. Life Sci. 28, 2389–2394 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Turner, B. B., Katz, R. J., Roth, K. A. & Carroll, B. J. Brain Res. 153, 419–422 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Seybold, V., Elder, R. & Hokfelt, T. Endocrinology 108, 1803–1809 (1983).

    Article  Google Scholar 

  17. Kiss, J. Z., Mezey, E. & Skirboll, L. Proc. natn. Acad. Sci. U.S.A. (in the press).

  18. Swanson, L. W. & Hartman, B. K. J. comp. Neurol. 163, 467–506 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Fuller, R. W. et al. Biochem. Pharmac. 30, 1345–1352 (1981).

    Article  CAS  Google Scholar 

  20. Sternberger, L. Immunocytochemistry (Wiley, New York, 1979).

    Google Scholar 

  21. Hsu Su-Ming & Ree, H. J. Am J. clin. Path. 74, 32–40 (1980).

    Article  Google Scholar 

  22. Hsu Su-Ming, Raine, L. & Fanger, H. J. Histochem. Cytochem. 29, 577–580 (1981).

    Article  Google Scholar 

  23. Inoue, S. & Sato, H. J. gen. Physiol. 50, 259–288 (1967).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezey, É., Kiss, J., Skirboll, L. et al. Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurones by depletion of hypothalamic adrenaline. Nature 310, 140–141 (1984). https://doi.org/10.1038/310140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310140a0

  • Springer Nature Limited

This article is cited by

Navigation