Skip to main content
Log in

Graphite crystals in hydrothermal vents

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Most studies of the hydrothermal input at active ocean ridges have concentrated on elements present in solution rather than particulate matter. During the exploratory cruises Clipperton1,2 and Geocyatherm3, we moored and recovered sediment traps close to hydrothermal vents associated with the 13° N East Pacific Rise (EPR) with the aim of studying the particulate flux. The first trap was moored about 300 m east of the axis of the central valley, the second was located directly in the central valley at about 200 m from active vents. Both traps were 50 m above the sea floor and well under the depth of expansion of the hydrothermal plume1. We report here that, in addition to the expected sulphides, we recovered crystals of graphite with antimonide overgrowths. This graphite is considered to be of hydrothermal origin; it can readily be distinguished from continentally-derived carbonaceous particles. The flux of hydrothermal graphite is estimated to be about 1.7 nmol cm−2 yr−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hékinian, R. et al. Science 219, 1321–1324 (1983).

    Article  ADS  Google Scholar 

  2. Boulègue, J., Lafitte, M. & Maury, R. C.Ŕ hebol. Séanc. Acad. Sci., Paris 296, 1729–1732.

  3. Hékinian, R. et al. Mar. ǵeophys. Res. 6, 1–14.

  4. Honjo, S. J. mar. Res. 38, 53–97 (1980).

    CAS  Google Scholar 

  5. Jedwab, J. Geochim. cosmochim. Acta 43, 101–110 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Jedwab, J. Earth Planet. Sci. Lett. 49, 551–564 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Haymon, R., Kastner, M. Earth Planet. Sci. Lett. 53, 363–381 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Oudin, E. Mar. Min. 4, 39–73 (1983).

    CAS  Google Scholar 

  9. Smith, D. M., Griffin, J. J. & Goldberg, E. D. Nature 241, 269–270 (1973).

    ADS  Google Scholar 

  10. Smith, D. M., Griffin, J. J. & Goldberg, E. D. Analyt. Chem. 47, 233–238 (1975).

    Article  CAS  Google Scholar 

  11. Dymond, J. et al. Earth Planet. Sci. Lett. 53, 409–418 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Brewer, P. G., Nosaki, Y., Spencer, D. W. & Fleer, A. P. J. mar. Res. 38, 703–708 (1980).

    CAS  Google Scholar 

  13. Honjo, S., Manganini, S. J. & Cole, J. J. Deep Sea Res. 29, 609–625 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Cobler, R. & Dymond, J. Science 209, 801–803 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Mathez, E. A. & Delaney, J. R. Earth Planet. Sci. Lett. 56, 217–232 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Pineau, F. & Javoy, M. Earth Planet. Sci. Lett. 62, 269–270 (1983).

    Article  ADS  Google Scholar 

  17. French, B. M. Rev. Geophys. 4, 223–253 (1966).

    Article  ADS  CAS  Google Scholar 

  18. Ramdohr, P. Neues Jb. Miner. Abh. 107, 241–265 (1967).

    CAS  Google Scholar 

  19. Pasteris, J. D. Geology 9, 356–359 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Gerlach, T. M. & Nordlie, B. E. Am. J. Sci. 275, 353–376 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Lafitte, M., Maury, R., Perseil, E. A. & Boulègue, J. Earth Planet. Sci. Lett. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jedwab, J., Boulègue, J. Graphite crystals in hydrothermal vents. Nature 310, 41–43 (1984). https://doi.org/10.1038/310041a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310041a0

  • Springer Nature Limited

This article is cited by

Navigation