Skip to main content
Log in

Direct measurement of picosecond charge separation in bacteriorhodopsin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The Halobacterium halobium protein bacteriorhodopsin conservesthe energy of absorbed photons by converting it into a transmembrane proton gradient1. Light absorption bybacteriorhodopsin is thought to drive a photocycle of intermediate states linked to the pumping of protons across the plasma membrane. The earliest intermediate of this photocycle so far detected is formed in 11–15 ps2,3, and this step could involve a separation of charges within the protein2,4–9. Although an electrical response signal with a time course correlating with that of the photocycle has been measured for bacteriorhodopsin, so far it has not been possible to resolve a signal corresponding to the initial charge separation10–16. We report here the resolution by picosecond laser spectroscopy of an electrical signal apparently corresponding to a charge separation with a time constant of approximately 30 ps, which we attribute to the formation of the first intermediate of the bacteriorhodopsin photocycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoeckenius, W., Lozier, R. & Bogomolni, R. Biochim. biophys. Acta 505, 215–278 (1979).

    Article  CAS  Google Scholar 

  2. Applebury, M., Peters, K. & Rentzepis, P. Biophys. J. 23, 375–382 (1978).

    Article  CAS  Google Scholar 

  3. Gillbro, T. & Sundström, V. Photochem. Photobiol. 37, 445–455 (1983).

    Article  CAS  Google Scholar 

  4. Lewis, A. Proc. natn. Acad. Sci. U.S.A. 75, 549–553 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Warshel, A. Proc. natn. Acad. Sci. U.S.A. 75, 2558–2562 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Schulten, K. & Tavan, P. Nature 272, 85–86 (1979).

    Article  ADS  Google Scholar 

  7. Honig, B., Ebrey, T., Callender, R. & Ottolenghi, M. Proc. natn. Acad. Sci. U.S.A. 76, 2503–2507 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Gochev, A. & Christov, S. Biophys. struct. Mech. 7, 187–193 (1981).

    Article  CAS  Google Scholar 

  9. Birge, R. & Cooper, T. Biophys. J. 42, 61–69 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Keszthelyi, L. & Ormos, P. FEBS Lett. 109, 189–193 (1980).

    Article  CAS  Google Scholar 

  11. Drachev, L., Kaulen, A. & Skulachev, V. FEBS Lett. 87, 161–167 (1978).

    Article  CAS  Google Scholar 

  12. Hong, F. & Montal, M. Biophys. J. 25, 465–472 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Fahr, A.,, Läuger, P. & Bamberg, E. J. Membrane Biol. 60, 51–62 (1981).

    Article  CAS  Google Scholar 

  14. Ormos, P., Reinisch, L. & Keszthelyi, L. Biochim. biophys. Acta 722, 471–479 (1983).

    Article  CAS  Google Scholar 

  15. Trissl, H.-W. Biochim. biophys. Acta 723, 327–331 (1983).

    Article  CAS  Google Scholar 

  16. Váró, Gy. & Keszthelyi, L. Biophys. J. 43, 47–51 (1983).

    Article  Google Scholar 

  17. Váró, Gy. Acta Biol. Acad. Sci. Hung. 32, 301–310 (1981).

    Google Scholar 

  18. Bor, Zs. IEEE J. Quantum Electron, QE-16, 517–524 (1980).

    Article  ADS  Google Scholar 

  19. Bor, Zs., Rácz, B., Szabó, G., Mueller, A. & Dorn, H. P. Helv. phys. Acta 56, 383–392 (1983).

    CAS  Google Scholar 

  20. Fodor, Gy. Laplace Transform in Engineeering, 43–46 (Hungarian Academy of Sciences, Budapest, 1965).

    Google Scholar 

  21. Trissl, H.-W., Kunze, U. & Junge, W. Biochim. biophys. Acta 682, 364–377 (1982).

    Article  CAS  Google Scholar 

  22. Salem, L. & Bruckmann, P. Nature 258, 526–528 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Mathies, R. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 73, 2169–2173 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groma, G., Szabó, G. & Váró, G. Direct measurement of picosecond charge separation in bacteriorhodopsin. Nature 308, 557–558 (1984). https://doi.org/10.1038/308557a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308557a0

  • Springer Nature Limited

This article is cited by

Navigation