Skip to main content
Log in

Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordstrom, D. K. in Acid Sulfate Weathering, 37–56 (Soil Science Society of America, Madison, 1982).

    Google Scholar 

  2. Garrels, R. M. & Thompson, M. E. Am. J. Sci. 258, 57–67 (1960).

    Article  Google Scholar 

  3. Singer, P. C. & Stumm, W., Second Symp. Coal Mine Drainage Res., 12–34 (Mellon Inst., Pittsburgh, 1968).

    Google Scholar 

  4. Singer, P. C. & Stumm, W. Science 167, 1121–1123 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Ehrlich, H. L. Geomicrobiology, (Dekker, New York, 1981).

  6. Lacy, D. T. & Lawson, F. Biotech. Bioengng. 12, 29–50 (1970).

    Article  Google Scholar 

  7. Nordstrom, D. K. thesis, Stanford Univ., Calif. (1977).

  8. Tuovinen, O. H. & Kelly, D. P. Z. allg. Mikrobiol. 12, 311–346 (1972).

    Article  CAS  Google Scholar 

  9. Bennett, J. C. & Tributsch, H. J. Bact. 134, 310–317 (1978).

    CAS  PubMed  Google Scholar 

  10. Kroopnick, P. & Craig, H. Science 175, 54–55 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Hoering, T. C. & Kennedy, J. W. J. Am. chem. Soc. 79, 56–60 (1967).

    Article  Google Scholar 

  12. Lloyd, R. M. J. geophys. Res. 73, 6099–6110 (1968).

    Article  ADS  CAS  Google Scholar 

  13. Nehring, N. L., Bowen, P. A. & Truesdell, A. H. Geothermics 5, 63–66 (1977).

    Article  CAS  Google Scholar 

  14. Friedman, I. & O'Neil, J. R. U.S. Geol. Survey Prof. Pap. 440-KK (1977).

  15. Coleman, M. L. & Moore, M. P. Analyt. Chem. 50, 1594–1595 (1978).

    Article  CAS  Google Scholar 

  16. Kaplan, I. R. & Rittenburg, S. C. J. gen. Microbiol. 34, 195–212 (1964).

    Article  CAS  Google Scholar 

  17. Kaplan, I. R. & Rafter, T. A. Science 127, 517–518 (1958).

    Article  ADS  CAS  Google Scholar 

  18. Nakai, N. & Jensen, M. L. Geochim. cosmochim. Acta 28, 1893–1912 (1964).

    Article  ADS  CAS  Google Scholar 

  19. Field, C. W. Econ. Geol. 61, 1428–1435 (1966).

    Article  CAS  Google Scholar 

  20. Schoen, R. & Rye, R. O. Science 170, 1082–1084 (1970).

    Article  ADS  CAS  Google Scholar 

  21. Goldhaber, M. B. Am. J. Sci. 283, 193–217 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Schwarcz, H. P. & Cortecci, G., Chem. Geol. 13, 285k–294k (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, B., Wheeler, M. & Nordstrom, D. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation. Nature 308, 538–541 (1984). https://doi.org/10.1038/308538a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308538a0

  • Springer Nature Limited

This article is cited by

Navigation