Skip to main content
Log in

Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The finding of abundant aluminium-rich objects within ordinary chondrites1–3 supports the suggestion4 that carbonaceous and type 3 ordinary chondrites, and their components4–7, share common origins. However, oxygen isotope systematics8 demonstrate that the chondrules present within the two meteorite types have isotopically distinct solid precursors, so while they may have a similar mode of formation, the chondrules come from isotopically separate reservoirs (a later reaction with a similar ambient gas is a possibility8). 26Mg excesses generated by the in situ decay of 26Al have previously only been found within Ca–Al-rich inclusions (CAIs) from carbonaceous chondrites9–14. In a search for 26Mg excesses generated by 26Al decay we analysed four Al-rich objects from the type 3 ordinary chondrites using an ion microprobe. We report here the presence of 26Mg excesses of up to 100% in an unusually pure hibonite clast from the Dhajala chondrite; this 26Mg excess is the first to be found in an ordinary chondrite. Despite the large 26Mg excesses, the initial 26Al/27Al ratio defined (8.4 × 10−6) is some five times lower than that commonly observed in calcium–aluminium-rich inclusions from the carbonaceous chondrites. No 26Mg excesses were observed in the three plagioclase-bearing chondrules analysed. The presence of 26Mg excesses within both unequilibrated ordinary and carbonaceous chondrites supports a common origin for components of these two meteorite types; however, 26Al may not have been sufficiently plentiful to act as a major heat source in condensed Solar System bodies15–17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bischoff, A. & Keil, K. Nature 303, 588–592 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Bischoff, A. & Keil, K. Univ. New Mexico, Inst. of Meteoritics Spec. Publ. No. 22, 1–33 (1983).

  3. Bischoff, A. & Keil, K. Geochim. cosmochim. Acta (in the press).

  4. Scott, E. R. D., Taylor, G. J. & Keil, K. Lunar planet. Sci. 13, 704–705 (1982).

    ADS  Google Scholar 

  5. Huss, G., Keil, K. & Taylor, G. J. Geochim. cosmochim. Acta 45, 33–51 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Robert, F. & Epstein, S. Geochim. cosmochim. Acta 46, 81–95 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Yang, J. & Epstein, S. Lunar planet. Sci. 14, 873–874 (1983).

    ADS  Google Scholar 

  8. Clayton, R. N. et al. in Conf. on Chondrules and Their Origins Contr. 493, 54 (Lunar Planetary Institute, Houston, Texas, 1982).

    Google Scholar 

  9. Lee, T., Papanastassiou, D. A. & Wasserburg, G. J. Geophys. Res. Lett. 3, 109–112 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Lee, T., Papanastassiou, D. A. & Wasserburg, G. J. Astrophys. J. Lett. 211, L107–L110 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Lee, T. Rev. Geophys. Space Phys. 17, 1591–1611 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Hutcheon, I. D. & Steele, I. M. Lunar planet. Sci. 11, 496–498 (1980).

    ADS  Google Scholar 

  13. Tanaka, T. et al. Lunar planet. Sci. 11, 1122–1124 (1980).

    ADS  Google Scholar 

  14. Hutcheon, I. D. Am. chem. Soc. Symp. Ser. No. 176, 95–128 (1982).

  15. Schramm, D. M., Tera, F. & Wasserburg, G. J. Earth planet. Sci. Lett. 10, 44–59 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Urey, H. C. Proc. natn. Acad. Sci. U.S.A. 41, 127–144 (1955).

    Article  ADS  CAS  Google Scholar 

  17. Armstrong, J. T., Meeker, G. P., Huneke, J. C. & Wasserburg, G. J. Geochim. cosmochim. Acta 46, 575–595 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Bence, A. E. & Albee, A. L. J. Geol. 76, 382–403 (1968).

    Article  ADS  CAS  Google Scholar 

  19. Bar-Matthews, M., Hutcheon, I. D., MacPherson, G. J. & Grossman, L. Geochim. cosmochim. Acta 46, 31–41 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Davis, A. M., Tanaka, T., Grossman, L., Lee, T. & Wasserburg, G. J. Geochim. cosmochim. Acta 46, 1627–1651 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Allen, J. M., Grossman, L., Lee, T. & Wasserburg, G. J. Geochim. cosmochim. Acta 44, 685–699 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Hutcheon, I. D., MacPherson, G. J., Steele, I. M. & Grossman, L. Meteoritics 14, 427 (1979).

    ADS  Google Scholar 

  23. Hutcheon, I D. et al. Meteoritics 15, 306–307 (1980).

    Google Scholar 

  24. Lorin, J. & Michel-Levy, M. C. U.S.G.S. Open File Rep. 78–701, 257–259 (1978).

  25. Steele, I. M., Smith, J. V., Hutcheon, I. D. & Clayton, R. N. Meteoritics 13, 498–499 (1978).

    Google Scholar 

  26. Lee, T., Russell, W. A. & Wasserburg, G. J. Astrophys. J. 228, L93–L98 (1979).

    Article  ADS  CAS  Google Scholar 

  27. McNaughton, N. J., Fallick, A. E. & Pilinger, C. T. J. geophys. Res. 87, A297–A302 (1982).

    Article  CAS  Google Scholar 

  28. Esat, T. M., Lee, T., Panastassiou, D. A. & Wasserburg, G. J. Geophys. Res. Lett. 5, 807–810 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Noonan, A. F. et al. Meteoritics 11, 340–343 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinton, R., Bischoff, A. Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites. Nature 308, 169–172 (1984). https://doi.org/10.1038/308169a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308169a0

  • Springer Nature Limited

This article is cited by

Navigation