Skip to main content
Log in

Combustion-generated carbon particles in the Arctic atmosphere

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Recent studies in the Alaskan Arctic1–3 show the presence of substantial concentrations of carbon- and sulphur-containing particles that seem to be characteristic of the Arctic region as a whole4–6. These particles are effective scatterers and absorbers of visible radiation3,7 and appear to be responsible for the phenomenon of Arctic haze first reported by Mitchell8. On the basis of trace element analysis, it has been suggested that these particles originate from anthropogenic sources at mid-latitudes1,4. Direct substantiation of combustion-generated particles in the Arctic atmosphere has been provided by the identification of large concentrations of graphitic carbon particles at the GMCC–NOAA (National Oceanic and Atmospheric Administration) observatory near Barrow, Alaska, using Raman spectroscopy3. We report here on an extension of our studies of carbon particles in the Alaskan Arctic to the Canadian Arctic and the Norwegian Arctic. These studies, using the Raman scattering technique, identify substantial concentrations of graphitic carbon particles at ground-level stations throughout the western Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahn, K. A. & McCaffrey, R. J. Ann. N.Y. Acad. Sci. 338, 486–503 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Shaw, G. E. Atmos. Envir. 15, 1483–1489 (1981).

    Article  Google Scholar 

  3. Rosen, H., Novakov, T. & Bodhaine, B. A. Atmos. Envir. 15, 1371–1374 (1981).

    Article  CAS  Google Scholar 

  4. Barrie, L. A., Hoff, R. M. & Duggupaty, S. M. Atmos. Envir. 15, 1407–1419 (1981).

    Article  CAS  Google Scholar 

  5. Ottar, B. Atmos. Envir. 15, 1439–1445 (1981).

    Article  CAS  Google Scholar 

  6. Heintzenberg, J. Tellus 32, 251–260 (1980).

    Article  ADS  Google Scholar 

  7. Bodhaine, B. A., Harris, T. M. & Herbert, G. A. Atmos. Envir. 15, 1375–1389 (1980).

    Article  Google Scholar 

  8. Mitchell, J. M. Jr J. atmos. terr. Phys., Spec. Suppl., 195–211 (1957).

  9. Shaw, G. E. & Stamnes, K. Ann. N.Y. Acad. Sci. 338, 533–539 (1980).

    Article  ADS  Google Scholar 

  10. Porch, W. M. & MacCracken, M. C. Atmos. Envir. 16, 1365–1371 (1981).

    Article  Google Scholar 

  11. Cess, R. D. Atmos. Envir. (in the press).

  12. Tuinstra, F. & Koenig, J. L. J. chem. Phys. 53, 1126–1130 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Wolff, G. T. & Klimisch, R. L. (eds) Particulate Carbon: Atmospheric Life Cycle (Plenum, New York, 1982).

    Google Scholar 

  14. Rosen, H., Hansen, A. D. A., Gundel, L. & Novakov, T. Appl. Opt. 17, 3859–3861 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Rosen, H., Hansen, A. D. A., Dod, R. L. & Novakov, T. Science 208, 741–743 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Angell, C. L. & Lewis, I. C. Carbon 16, 431–432 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, H., Novakov, T. Combustion-generated carbon particles in the Arctic atmosphere. Nature 306, 768–770 (1983). https://doi.org/10.1038/306768a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306768a0

  • Springer Nature Limited

This article is cited by

Navigation