Skip to main content
Log in

Single neurones can initiate synchronized population discharge in the hippocampus

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The synchronized firing of neuronal populations is frequently observed in the mammalian central nervous system. The generation of motor activities such as locomotion1 and respiration2 requires the simultaneous activation of many neurones and synchronous firing also underlies the cortical α rhythm3 and the hippocampal θ rhythm4. However the influence that single neurones may have on such neuronal population discharges is not clear. We have examined this question using small isolated segments of the CA3 region of the guinea pig hippocampus. We report here that in the presence of picrotoxin, a γ-aminobutyric acid (GABA) antagonist, these segments spontaneously generate synchronized rhythmic bursts comparable with the interictal epileptiform discharges observed in the hippocampus and neocortex in the presence of penicillin5–7. The activation of some individual neurones by intracellular current injection can partially entrain and reset the rhythm. The probability that a synchronized burst will follow stimulation of a single cell increases with time after a spontaneous synchronized discharge, suggesting that each population discharge is followed by a period of relative population refractoriness. A delay of 40–200 ms elapses between the activation of a single neurone and the synchronized discharge. We suggest that during this time activity elicited in one neurone spreads to other neurones through multisynaptic excitatory pathways and leads eventually to the participation of the whole population in a synchronous burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grillner, S. Physiol. Rev. 55, 247–304 (1975).

    Article  CAS  Google Scholar 

  2. Wyman, R. J. A. Rev. Physiol. 39, 417–448 (1977).

    Article  CAS  Google Scholar 

  3. Andersen, P. & Andersson, S. A. Physiological Basis of the Alpha Rhythm (Appleton-Century Crofts, New York, 1968).

    Google Scholar 

  4. Fujita, Y. & Sato, T. J. Neurophysiol. 27, 1011–1025 (1964).

    Article  CAS  Google Scholar 

  5. Prince, D.A. Expl Neurol. 21, 467–485 (1968).

    Article  CAS  Google Scholar 

  6. Dichter, M. & Spencer, W.A. J. Neurophysiol. 32, 649–662 (1969).

    Article  CAS  Google Scholar 

  7. Matsumoto, M., Ayala, G.F. & Gumnit, R. J. J. Neurophysiol. 32, 688–703 (1969).

    Article  CAS  Google Scholar 

  8. Shepherd, G. M. The Synaptic Organization of the Brain (Oxford University Press, 1979).

    Google Scholar 

  9. Schwartzkroin, P. A. Brain Res. 85, 423–436 (1975).

    Article  CAS  Google Scholar 

  10. Wong, R. K. S. & Prince, D. A. J. Neurophysiol. 45, 423–436 (1975).

    Google Scholar 

  11. Brown, T. H., Fricke, R. A. & Perkel, D. A. J. Neurophysiol. 46, 212–227 (1981).

    Article  Google Scholar 

  12. Pinsker, H. M. J. Neurophysiol. 40, 544–556 (1977).

    Article  CAS  Google Scholar 

  13. Lebovitz, R. M. Brain Res. 172, 35–55 (1979).

    Article  CAS  Google Scholar 

  14. Andersen, P., Eccles, J. C. & Sears, T. A. J. Physiol., Lond. 174, 370–399 (1964).

    Article  CAS  Google Scholar 

  15. Dichter, M. & Spencer, W. A. J. Neurophysiol. 32, 663–687 (1969).

    Article  CAS  Google Scholar 

  16. Cajal, S. R. Histologie du Système Nerveux d'Homme et des Vertèbres Vol. 2(Maloine, Paris, 1911).

    Google Scholar 

  17. Lorente de Nó, R., J. Psychol. Neurol. 46, 113–177 (1934).

    Google Scholar 

  18. MacVicar, B. A. & Dudek, F. E. Brain Res. 184, 220–223 (1980).

    Article  CAS  Google Scholar 

  19. Traub, R. D. & Wong, R. K. S. Science 216, 745–747 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Kuno, M. J. Physiol., Lond. 175, 81–99 (1964).

    Article  CAS  Google Scholar 

  21. Jefferys, J. R. G. & Haas, H. L. Nature 300, 448–450 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Taylor, C. P. & Dudek, F. E. Science 218, 810–812 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Ben-Ari, Y., Krnjević, K. & Reinhardt, W. J. Physiol., Lond. 298, 36–37P (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, R., Wong, R. Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306, 371–373 (1983). https://doi.org/10.1038/306371a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306371a0

  • Springer Nature Limited

This article is cited by

Navigation