Skip to main content

Advertisement

Log in

Processing of polarized light by squid photoreceptors

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Behavioural tests1–4 have demonstrated that cephalopods can discriminate light polarized in different planes, and the receptors have been localized by electrophysiological studies of the eye5–10. Discrimination of the plane of polarization is a consequence of both the structure of the microvilli in the outer segments of the photoreceptors11 and the orientation of the photosensitive chromophore on these membranes2,12,13. However, between the depolarizing receptor response resulting from photoreception and the behaviour of the animal, nothing is known about neuronal processing of polarized light by cephalopods. Here we show that some squid photoreceptors discriminate the plane of polarization within the spike train, and that any particular plane is seen as a variable intensity. Given the well known orthogonal orientation of microvilli in outer segments of adjacent photoreceptors and the physiological preference for one of two mutually perpendicular planes of polarization by single photoreceptors, we conclude that cephalopod vision is based on two complementary views of the world, each determined by the transformation of polarization-sensitive receptors into complementary intensity scales. A visual system based on this transformation would lead to enhanced contrast underwater and visualization of object details obscured by confounding highlights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moody, M. F. & Parriss, J. R. Nature 186, 839–840 (1960).

    Article  ADS  CAS  Google Scholar 

  2. Moody, M. F. & Parriss, J. R. Z. vergl. Physiol. 44, 268–291 (1961).

    Article  Google Scholar 

  3. Rowell, C. H. F. & Wells, M. J. J. exp. Biol. 38, 827–831 (1961).

    Google Scholar 

  4. Jander, R., Daumer, K. & Waterman, T. H. Z. vergl. Physiol. 46, 383–394 (1963).

    Article  Google Scholar 

  5. Lettvin, J. Y. Q. Prog. Rep. Res. Lab. Electron. M.I.T. 64, 288–290 (1962).

    Google Scholar 

  6. Tasaki, K. & Karita, K. Nature 209. 934–935 (1966).

    Article  ADS  Google Scholar 

  7. Tasaki, K. & Karita, K. Jap. J. Physiol. 16, 205–216 (1966).

    Article  CAS  Google Scholar 

  8. Tomita, T. Proc. IEEE 56, 1015–1023 (1968).

    Article  Google Scholar 

  9. Saidel, W. M. Biol. Bull. 159, 490 (1980).

    Google Scholar 

  10. Suguwara, L., Katagiri, Y. & Tomita, T. J. Fac. Sci. Hokkaido Univ. Ser. VI 17, 581–586 (1971).

    Google Scholar 

  11. Waterman, T. H. in Handbook of Sensory Physiology Vol 7/6B (ed. Autrum, H.) 281–469 (Springer, Berlin, 1981).

    Google Scholar 

  12. Tauber, U. in Photoreceptor Optics (eds Snyder, A. W. & Menzel, R.) 296–315 (Springer, Berlin, 1975).

    Book  Google Scholar 

  13. Schlecht, P. & Tauber, U. in Photoreceptor Optics (eds Snyder, A. W. & Menzel, R.) 316–335 (Springer, Berlin, 1975).

    Book  Google Scholar 

  14. Lange, G. D. & Hartline, P. H. J. comp. Physiol. 93, 19–36 (1974).

    Article  Google Scholar 

  15. Pinto, L. H. & Brown, J. E. J. comp. Physiol. 122, 242–250 (1977).

    Article  Google Scholar 

  16. Wolken, J. J. J. biophys. biochem. Cytol. 4, 835–838 (1958).

    Article  CAS  Google Scholar 

  17. Young, J. Z. Nature 186, 836–839 (1960).

    Article  ADS  CAS  Google Scholar 

  18. Zonana, H. V. Bull. Johns Hopkins Hosp. 100, 185–205 (1961).

    Google Scholar 

  19. Yamamoto, T., Tasaki, K., Sugawara, Y. & Tonosaki, A. J. Cell Biol. 25, 345–359 (1965).

    Article  CAS  Google Scholar 

  20. Cohen, A. I. J. comp. Neurol. 147, 351–377 (1973).

    Article  CAS  Google Scholar 

  21. Bernard, G. D. & Wehner, R. Vision Res. 17, 1019–1028 (1977).

    Article  CAS  Google Scholar 

  22. Young, J. Z. Phil. Trans. R. Soc. B245, 1–18 (1962).

    Article  Google Scholar 

  23. Lund, R. D. Expl Neurol. 15, 100–112 (1966).

    Article  CAS  Google Scholar 

  24. Lange, G. D., Hartline, P. H. & Hurley, A. C. in Neural Principles in Vision (eds Zettler, F. & Weiler, R.) 389–393 (Springer, Berlin, 1976).

    Book  Google Scholar 

  25. Saidel, W. M. Soc. Neurosci. Abstr. 5, 260 (1979).

    Google Scholar 

  26. Young, J. Z. Proc. zool. Soc. Lond. 140, 255–272 (1963).

    Article  Google Scholar 

  27. Daw, N. W. & Pearlman, A. L. J. gen. Physiol. 63, 22–36 (1974).

    Article  CAS  Google Scholar 

  28. Wells, M. J. Octopus: Physiology and Behavior of an Advanced Invertebrate, 179–216 (Chapman & Hall, London, 1978).

    Book  Google Scholar 

  29. Lythgoe, J. N. & Hemmings, C. C. Nature 213, 893–894 (1967).

    Article  ADS  CAS  Google Scholar 

  30. Land, M. F. in Handbook of Sensory Physiology Vol 7/6B (ed. Autrum, H.) 520 (Springer,Berlin, 1981).

    Google Scholar 

  31. Packard, A. Monitore zool. ital. 3, 19–32 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saidel, W., Lettvin, J. & MacNichol, E. Processing of polarized light by squid photoreceptors. Nature 304, 534–536 (1983). https://doi.org/10.1038/304534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304534a0

  • Springer Nature Limited

This article is cited by

Navigation