Skip to main content
Log in

Human β-nerve growth factor gene sequence highly homologous to that of mouse

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Nerve growth factor (NGF) is thought to have a profound effect on the development and maintenance of sympathetic and embryonic sensory neurones (see refs 1–3 for review). NGF activity isolated from the male mouse submaxillary gland (MSG) consists of three types of subunits, α, β and γ, which specifically interact to form a 7S, ∼130,000-molecular weight (Mr) complex. The 7S complex contains two identical 118-amino acid β-chains, which are solely responsible for the nerve growth-stimulating activity of NGF. While NGF is found in almost all vertebrates4, most research has focused on murine NGF, as the mouse male submaxillary gland contains higher levels of this polypeptide than other tissues4. Even so, β-NGF comprises only ∼0.1% of the protein in this small gland, which has made the study of this polypeptide difficult. The amino acid sequence of the mouse NGF β-chain has been determined5 and some information has been obtained regarding the size of a mouse precursor molecule6, pro-β-NGF, but little was known about the structure and relatedness of β-NGF from other vertebrates. Here we describe the isolation of mouse β-NGF complementary DNA (cDNA) and present its nucleotide sequence, which predicts a prepro-β-NGF molecule of Mr 27,000 (27K) and a pro-β-NGF molecule of Mr 25K. We have used the mouse β-NGF cDNA clone to isolate the human β-NGF gene, the coding regions of which are highly homologous to the mouse prepro-β-NGF nucleotide and amino acid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levi-Montalcini, R. A. Rev. Neurosci. 5, 341–362 (1982).

    Article  CAS  Google Scholar 

  2. Yanker, B. A. & Shooter, E. M. A. Rev. Biochem. 51, 845–868 (1982).

    Article  Google Scholar 

  3. Bradshaw, R. A. A. Rev. Biochem. 47, 191–216 (1978).

    Article  CAS  Google Scholar 

  4. Harper, G. P. & Thoenin, H. J. Neurochem. 34, 893–903 (1980).

    Article  CAS  Google Scholar 

  5. Angeletti, R. H., Mercanti, D. & Bradshaw, R. A. Biochemistry 12, 90–100 (1973).

    Article  CAS  Google Scholar 

  6. Berger, E. A. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 74, 3647–3651 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Ishii, D. N. & Shooter, E. M. J. Neurochem. 25, 843–851 (1975).

    Article  CAS  Google Scholar 

  8. Crea, R. & Horn, T. Nucleic Acids Res. 8, 2331–2348 (1980).

    Article  CAS  Google Scholar 

  9. Lehrach, H., Diamond, D., Wozney, J. M. & Boedtker, H. Biochemistry 16, 4743–4751 (1977).

    Article  CAS  Google Scholar 

  10. Angeletti, R. H., Hermodson, M. A. & Bradshaw, R. A. Biochemistry 12, 100–115 (1973).

    Article  CAS  Google Scholar 

  11. Noda, M. et al. Nature 295, 202–206 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Kakidani, H. et al. Nature 298, 245–249 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Nakanishi, S. et al. Nature 278, 423–427 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Amara, S. G., Jonmas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Nature 298, 240–244 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Smith, A. P., Varon, S. & Shooter, E. M. Biochemistry 7, 3259–3268 (1968).

    Article  CAS  Google Scholar 

  16. Kozak, M. Nucleic Acids Res. 9, 5233–5252 (1981).

    Article  CAS  Google Scholar 

  17. Blobel, G. et al. Soc. exp. Biol. Symp. 23, 9–36 (1979).

    Google Scholar 

  18. Lingappa, V. R., Lingappa, J. R., Prasad, R., Ebner, K. B. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 75, 2338–2342 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Lawn, R. M., Fritsch, E. F., Parker, R. C., Lake, G. B. & Maniatis, T. Cell 15, 1157–1163 (1978).

    Article  CAS  Google Scholar 

  20. Southern, E. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  21. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Tosi, M., Young, R. A., Hagenbuchle, O. & Schibler, U. Nucleic Acids Res. 9, 2313–2323 (1981).

    Article  CAS  Google Scholar 

  24. Sharp, P. A. Cell 23, 643–646 (1981).

    Article  CAS  Google Scholar 

  25. Ullrich, A., Dull, T. J., Gray, A., Brosius, J. & Sures, I. Science 209, 612–615 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Lomedico, P. et al. Cell 18, 545–556 (1979).

    Article  CAS  Google Scholar 

  27. Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 75, 4853–4857 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Wickens, M. P., Buell, G. N. & Schimke, R. T. J. biol. Chem. 253, 2483–2495 (1978).

    CAS  PubMed  Google Scholar 

  29. Wallace, B. et al. Nucleic Acids Res. 9, 879–894 (1981).

    Article  CAS  Google Scholar 

  30. Taylor, J. M., Illmensee, R. & Summers, J. Biochim. biophys. Acta 4, 324–330 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, A., Gray, A., Berman, C. et al. Human β-nerve growth factor gene sequence highly homologous to that of mouse. Nature 303, 821–825 (1983). https://doi.org/10.1038/303821a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303821a0

  • Springer Nature Limited

This article is cited by

Navigation