Skip to main content
Log in

The 5′-flanking region of a human IFN-α gene mediates viral induction of transcription

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Usually only cells exposed to virus, double-stranded RNA or other inducers synthesize interferon (IFN)1,2. Interferon mRNA appears 1–2 h after induction, peaks at 1.5–20 h and decays with a half life of about 30 min3–6. So far, it has not been determined whether induction of interferon is due to transient stabilization of a rapidly turning-over mRNA or to activation of transcription. To clarify this issue we transformed mouse L cells with a hybrid gene in which the 5′-flanking region of the human IFN-α1 gene was followed by the rabbit β-globin transcription unit. Correctly initiated β-globin RNA appeared only after viral induction, with the kinetics described for interferon mRNA7. Cells transformed with the converse construction, or with the complete rabbit β-globin gene, constitutively produced correctly initiated transcripts; viral infection decreased the level of transcripts. We conclude that induction acts by activating transcription rather than by reducing turnover, and that the regulatory elements are contained in the 5′-flanking region of the interferon gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, W. II. The Interferon System (Springer, New York, 1979).

    Book  Google Scholar 

  2. Berg, K. Acta path. microbiol. immun. scand. Sect. C, Suppl. 279 (1982).

  3. Raj, N. & Pitha, P. Proc. natn. Acad. Sci. U.S.A. 78, 7426–7430 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Cavalieri, R., Havell, E., Vilcek, J. & Pestka, S. Proc. natn. Acad. Sci. U.S.A. 74, 4415–4419 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Sehgal, P., Dobberstein, B. & Tamm, I. Proc. natn. Acad. Sci. U.S.A. 74, 3409–3413 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Morser, J. et al. J. gen. Virol. 44, 231–234 (1979).

    Article  CAS  Google Scholar 

  7. Mantei, N. & Weissmann, C. Nature 297, 128–132 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Dierks, P., van Ooyen, A., Mantei, N. & Weissmann, C. Proc. natn. Acad. Sci. U.S.A. 78, 1411–1415 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Dierks, P. et al. Cell 32, 695–706 (1983).

    Article  CAS  Google Scholar 

  10. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  11. Weaver, R. & Weissmann, C. Nucleic Acids Res. 7, 1175–1193 (1979).

    Article  CAS  Google Scholar 

  12. Mantei, N., Boll, W. & Weissmann, C. Nature 281, 40–46 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Grosveld, G., de Bower, E., Shewmaker, C. K. & Flavell, R. A. Nature 295, 120–126 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Shaw, G. D. et al. Nucleic Acids Res. 11, 555–573 (1983).

    Article  CAS  Google Scholar 

  15. Wilson, D. E. J. Virol. 2, 1–6 (1968).

    Article  CAS  Google Scholar 

  16. Thacore, H. & Youngner, J. S. J. Virol. 6, 42–48 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vollock, V. & Housman, D. Cell 23, 509–514 (1981).

    Article  Google Scholar 

  18. Robins, D., Peacock, I., Seeburg, P. & Axel, R. Cell 29, 623–631 (1982).

    Article  CAS  Google Scholar 

  19. Majo, K., Warren, R. & Palmiter, R. Cell 29, 99–108 (1982).

    Article  Google Scholar 

  20. Pelham, H. R. B. Cell 30, 517–528 (1982).

    Article  CAS  Google Scholar 

  21. Lee, F., Mulligan, R., Berg, P. & Ringold, G. Nature 294, 228–232 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Reyes, G. et al. Nature 297, 597–601 (1982).

    Article  ADS  Google Scholar 

  23. Pitha, P. et al. Proc. natn. Acad. Sci. U.S.A. 79, 4337–4341 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Grosschedl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 1432–1436 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Benoist, C. & Chambon, P. Nature 290, 304–310 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Ragg, H. & Weissmann, C. Nature 303, 439–442 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Nagata, S., Mantei, N. & Weissmann, C. Nature 287, 401–408 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Chalberg, M. & Englund, P. Meth. Enzym. 65, 39–43 (1980).

    Article  Google Scholar 

  29. van Ooyen, A., van den Berg, J., Mantei, N. & Weissmann, C. Science 206, 337–344 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Grunstein, D. & Hogness, D. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Maxam, A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  32. Wilkie, N. et al. Nucleic Acids Res. 7, 859–877 (1979).

    Article  CAS  Google Scholar 

  33. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  34. Bernardi, G. Meth. Enzym. 21, 95–147 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidle, U., Weissmann, C. The 5′-flanking region of a human IFN-α gene mediates viral induction of transcription. Nature 303, 442–446 (1983). https://doi.org/10.1038/303442a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303442a0

  • Springer Nature Limited

This article is cited by

Navigation