Skip to main content
Log in

Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Ample evidence exists for histaminergic1 and noradrenergic2,3 projections to the hippocampus. Both amines exert neurotransmitter or modulator actions on principal neurones in the CA 1 and in the dentate area. A number of mechanisms have been proposed for these actions, including increased potassium conductance4, increased chloride conductance and electrogenic pump stimulation5,6, and reduction of the anomalous inward rectification5. Action potentials, and particularly bursts of spikes, in CA 1 pyramidal cells, are followed by an afterhyper-polarization (AHP) which consists of two components7. The late AHP depends on a calcium-activated potassium conductance gK+ (Ca2+)8–13, and has recently been shown to be increased by dopamine14. We report here a rapid and reversible decrease of the late AHP component following a burst of sodium spikes or a calcium spike, during perfusion with micromotor concentrations of histamine and noradrenaline2. This effect is mediated by H2 receptors and β-receptors, respectively, and occurred in the absence of changes in the calcium spike. By such a mechanism histamine and noradrenaline can profoundly potentiate the excitatory impact of depolarizing signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwartz, J. C. A. Rev. Pharmac. Tox. 17, 325–339 (1974).

    Article  Google Scholar 

  2. Ungerstedt, U. Actaphysiol. scand., Suppl. 367, 1–48 (1971).

    CAS  Google Scholar 

  3. Segal, M. & Bloom, F. E. Brain Res. 72, 99–113 (1974).

    Article  CAS  Google Scholar 

  4. Haas, H. L. Neurosci. Lett. 22, 75–78 (1981).

    Article  CAS  Google Scholar 

  5. Langmoen, I. A., Segal, M. & Andersen, P. Brain Res. 208, 349–362 (1981).

    Article  CAS  Google Scholar 

  6. Segal, M. Brain Res. 206, 107–128 (1981).

    Article  CAS  Google Scholar 

  7. Gustafsson, B. & Wigstroem, H. Brain Res. 206, 462–468 (1981).

    Article  CAS  Google Scholar 

  8. Alger, B. E. & Nicoll, R. A. Science 210, 1122–1124 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Heyer, C. B. & Lux, H. D. J. Physiol., Lond. 262, 349–382 (1976).

    Article  CAS  Google Scholar 

  10. Hotson, J. R. & Prince, D. A. J. Neurophysiol. 43, 409–419 (1980).

    Article  CAS  Google Scholar 

  11. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  13. Schwartzkroin, P. A. & Stafstrom, C. E. Science 210, 1125–1127 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Benardo, L. S. & Prince, D. A. Nature 297, 76–79 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Haas, H. L., Schaerer, B. & Vosmansky, M. J. Neurosci. Meth. 1, 323–325 (1979).

    Article  CAS  Google Scholar 

  16. Schwartzkroin, P. A. & Slawsky, M. Brain Res. 135, 157–161 (1977).

    Article  CAS  Google Scholar 

  17. Haas, H. L. & Gaehwiler, B.H. Neurosci. Lett. 19, 89–92 (1980).

    Article  CAS  Google Scholar 

  18. Alger, B. E. & Nicoll, R. A. Brain Res. 200, 195–200 (1980).

    Article  CAS  Google Scholar 

  19. Haas, H. L. & Rose, G. J. Physiol., Lond. 329, 541–552 (1982).

    Article  CAS  Google Scholar 

  20. Segal, M. Neurosci. Lett. 19, 67–71 (1980).

    Article  CAS  Google Scholar 

  21. Cottrell, G. A. Nature 296, 87–89 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Frederickson, R. C. A., Jordan, L. M. & Phillis, J. W. Brain Res. 35, 556–560 (1971).

    Article  CAS  Google Scholar 

  23. Haas, H. L. & Wolf, P. Brain Res. 122, 269–279 (1977).

    Article  CAS  Google Scholar 

  24. Krnjević, K., Lamour, Y., MacDonald, J. F. & Nistri, A. Can. J. Physiol. Pharmac. 56, 896–900 (1978).

    Article  Google Scholar 

  25. Mueller, A. L., Hoffer, B. J. & Dunwiddie, T. V. Brain Res. 214, 113–126 (1981).

    Article  CAS  Google Scholar 

  26. Madison, D. V. & Nicoll, R. A. Nature 299, 636–638 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Haas, H. L., Wolf, P., Palacios, J. M., Garbarg, M., Barbin, G. & Schwartz, J. C. Brain Res. 156, 275–291 (1978).

    Article  CAS  Google Scholar 

  28. Palmer, G. C., Sulser, F. & Robison, G. A. Neuropharmacology 12, 327–337 (1973).

    Article  CAS  Google Scholar 

  29. Segal, M., Greenberger, V. & Hofstein, R. Brain Res. 213, 351–364 (1981).

    Article  CAS  Google Scholar 

  30. Hotson, J. R., Prince, D. A. & Schwartzkroin, P. A. J. Neurophysiol. 42, 889–895 (1979).

    Article  CAS  Google Scholar 

  31. Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J. & Freedman, R. Fedn Proc. 38, 2109–2116 (1979).

    CAS  Google Scholar 

  32. Rogawski, M. A. & Aghajanian, G. K. Nature 287, 731–734 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, H., Konnerth, A. Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302, 432–434 (1983). https://doi.org/10.1038/302432a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302432a0

  • Springer Nature Limited

This article is cited by

Navigation