Skip to main content

Advertisement

Log in

Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The primary base of the food chain of the dense animal populations found clustered around deep-sea hydrothermal vents1,2 appears to be chemoautotrophic bacteria, whose energy source is geothermally reduced hydrogen sulphide emitted from the vents3,4. Recently, a symbiotic association has been postulated5 between chemoautotrophic sulphur-oxidizing bacteria and the vent tubeworm, Riftia pachyptila Jones (phylum Pogonophora) on the basis of histological5 and enzymatic6 evidence. Hydrothermal vents thus appear to be a spectacular example of the role of reduced inorganic elements in animal nutrition. Marine muds and salt marsh sediments also produce a continuous supply of reduced sulphur compounds7,8, so the possibility arises that they support similar symbiotic associations5,9. I now present microscopic, enzymatic, and physiological evidence for the occurrence of intracellular sulphur-oxidizing chemoautotrophic bacteria in a bivalve, Solemya velum Say (phylum Mollusca), found in reducing muds of eelgrass beds. Bacterial symbionts were also observed in other animals from a variety of sulphide-rich habitats. It thus seems that symbiotic relationships with bacteria are widespread among sulphide-habitat marine invertebrates, and may have a significant role in their nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corliss, J. B. et al. Science 203, 1073–1083 (1979).

    Article  ADS  CAS  Google Scholar 

  2. RISE Project Group Science 207, 1421–1432 (1980).

  3. Jannasch, H. W. & Wirsen, C. O. Bioscience 29, 592–598 (1979).

    Article  CAS  Google Scholar 

  4. Ruby, E. G., Wirsen, C. O. & Jannasch, H. W. Appl. envir. Microbiol. 42, 317–324 (1981).

    CAS  Google Scholar 

  5. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Science 213, 340–342 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Felbeck, H. Science 213, 336–338 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Jorgensen, B. B. Nature 296, 643–645 (1982).

    Article  ADS  Google Scholar 

  8. Howarth, R. W. & Teal, J. M. Limnol. Oceanogr. 24, 999–1013 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Cavanaugh, C. M. Biol. Bull. mar. biol. lab., Woods Hole 159, 457 (1980).

    Google Scholar 

  10. Stanley, S. M. Geol. Soc. Am. Mem. 125, 119–121, 132–133 (1970).

    Google Scholar 

  11. Blackwell, J. F., Gainey, L. F. Jr & Greenberg, M. J. Biol. Bull. mar. biol. lab., Woods Hole 152, 1–11 (1977).

    Article  Google Scholar 

  12. McFadden, B. A. Bact. Rev. 37, 289–319 (1973).

    CAS  PubMed  Google Scholar 

  13. Hobbie, J. E., Daley, R. J. & Jasper, S. Appl. envir. Microbiol. 33, 1225–1228 (1977).

    CAS  Google Scholar 

  14. Watson, S. W., Novitsky, T. J., Quinby, H. L. & Valois, F. W. Appl. Microbiol. 33, 940–946 (1977).

    CAS  Google Scholar 

  15. Sprent, J. I. in The Biology of Nitrogen-Fixing Organisms (European Plant Biology Series) 13–26 (McGraw-Hill, New York, 1979).

    Google Scholar 

  16. Bailey, J. E. & Ollis, D. F. in Biochemical Engineering Fundamentals, 70 (McGraw-Hill, New York, 1977).

    Google Scholar 

  17. Beudeker, R. F., Cannon, G. C., Kuenen, J. G. & Shively, J. M. Archs Mikrobiol. 124, 185–189 (1977).

    Google Scholar 

  18. Felbeck, H., Childress, J. J. & Somero, G. N. Nature 293, 291–293 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Southward, A. J. et al. Nature 293, 616–620 (1981).

    Article  ADS  Google Scholar 

  20. Giere, O., Liebezeit, G. & Dawson, R. Mar. Ecol. Prog. Ser. 8, 291–299 (1982).

    Article  ADS  Google Scholar 

  21. Jones, M. L. Science 213, 333–336 (1979).

    Article  ADS  Google Scholar 

  22. Reid, R. G. B. & Bernard, F. R. Science 208, 609–610 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Boss, K. J. & Turner, R. D. Malacologia 20, 161–194 (1980).

    Google Scholar 

  24. Allen, J. A. Phil. Trans. R. Sci. B241, 421–484 (1958).

    Article  Google Scholar 

  25. Howarth, R. W., Giblin, A., Gale, J., Peterson, B. J. & Luther, G. W. III, in Environmental Biogeochemistry (ed. Hallberg, R. O.) (Ecological Bulletin, Stockholm, in the press).

  26. Waterbury, J. B. & Stanier, R. Y. Microbiol. Rev. 42, 2–44 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Land, J. & Norrevang, A. Biol. Skr. 21, 1–102 (1977).

    Google Scholar 

  28. Lonsdale, P. Nature 281, 531–534 (1979).

    Article  ADS  Google Scholar 

  29. Emery, K. O. & Hulsemann, J. Deep-Sea Res. 8, 165–180 (1962).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavanaugh, C. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302, 58–61 (1983). https://doi.org/10.1038/302058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302058a0

  • Springer Nature Limited

This article is cited by

Navigation