Skip to main content
Log in

Primary structures of β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The nicotinic acetylcholine receptor (AChR) from fish electric organ and mammalian skeletal muscle is the best characterized neurotransmitter receptor (reviewed in refs 1–3). The AChR from the electroplax of the ray Torpedo californica consists of five subunits present in a molar stoichiometry of α2βγδ (refs 4–6); the apparent molecular weights of the α-, β-, γ- and δ-subunits are 40,000 (40K), 50K, 60K and 65K, respectively7–11. Knowledge of the primary structures of these constituent polypeptides would facilitate the understanding of the molecular mechanism underlying the function of the neurotransmitter receptor. Recently, we have cloned cDNA for the α-subunit precursor of the T. californica AChR and have deduced the primary structure of this polypeptide from the nucleotide sequence of the cloned cDNA12. Here we report the cloning and nucleotide analysis of cDNAs for the AChR β- and δ-subunit precursors. The primary structures of the two polypeptides deduced from the cDNA sequences reveal conspicuous amino acid sequence homology among these and the α-subunits. The three subunits contain several highly conserved regions which may be essential for the receptor function or inter-summit interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heidmann, T. & Changeux, J. P. A. Rev. Biochem. 47, 317–357 (1978).

    Article  CAS  Google Scholar 

  2. Karlin, A. in Cell Surface Reviews Vol. 6 (eds Cotman, C. W., Poste, G. & Nicolson, G. L.) 191–260 (North-Holland, Amsterdam, 1980).

    Google Scholar 

  3. Conti-Tronconi, B. M. & Raftery, M. A. A. Rev. Biochem. 51, 491–530 (1982).

    Article  CAS  Google Scholar 

  4. Reynolds, J. & Karlin, A. Biochemistry 17, 2035–2038 (1978).

    Article  CAS  Google Scholar 

  5. Lindstrom, J., Merlie, J. & Yogeeswaran, G. Biochemistry 18, 4465–4470 (1979).

    Article  CAS  Google Scholar 

  6. Raftery, M. A., Hunkapiller, M. W., Strader, C. D. & Hood, L. E. Science 208, 1454–1457 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Weill, C. L., McNamee, M. G. & Karlin, A. Biochem. biophys. Res. Commun. 61, 997–1003 (1974).

    Article  CAS  Google Scholar 

  8. Raftery, M. A., Vandlen, R. L., Reed, K. L., Lee, T. Cold Spring Harb. Symp. quant. Biol. 40, 193–202 (1975).

    Article  Google Scholar 

  9. Hucho, F., Bandini, G. & Suárez-Isla, B. A. Eur. J. Biochem. 83, 335–340 (1978).

    Article  CAS  Google Scholar 

  10. Froehner, S. C. & Rafto, S. Biochemistry 18, 301–307 (1979).

    Article  CAS  Google Scholar 

  11. Vandlen, R. L., Wu, W. C. S., Eisenach, J. C. & Raftery, M. A. Biochemistry 18, 1845–1854 (1979).

    Article  CAS  Google Scholar 

  12. Noda, M. et al. Nature 299, 793–797 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–170 (1982).

    Article  CAS  Google Scholar 

  14. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  15. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Goeddel, D. V. et al. Nature 290, 20–26 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Maniatis, T., Kee, S. G., Efstratiadis, A. & Kafatos, F. C. Cell 8, 163–182 (1976).

    Article  CAS  Google Scholar 

  18. Efstratiadis, A., Kafatos, F. C. & Maniatis, T. Cell 10, 571–585 (1977).

    Article  CAS  Google Scholar 

  19. Slightom, J. L., Blechl, A. E. & Smithies, O. Cell 21, 627–638 (1980).

    Article  CAS  Google Scholar 

  20. Browne, J. K. et al. Science 195, 389–391 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 852–862 (1975).

    Article  CAS  Google Scholar 

  22. Steiner, D. F., Quinn, P. S., Chan, S. J., Marsh, J. & Tager, H. S. Ann. N.Y. Acad. Sci. 343, 1–16 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Ballivet, M., Patrick, J., Lee, J. & Heinemann, S. Proc. natn. Acad. Sci. U.S.A. 79, 4466–4470 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Hunt, L. T., Hurst-Calderone, S. & Dayhoff, M. O. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 229–249 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).

    Google Scholar 

  25. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 345–352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1979).

    Google Scholar 

  26. Tzartos, S. J. & Lindstrom, J. M. Proc. natn. Acad. Sci. U.S.A. 77, 755–759 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Tzartos, S. J., Rand, D. E., Einarson, B. L. & Lindstrom, J. M. J. biol. Chem. 256, 8635–8645 (1981).

    CAS  PubMed  Google Scholar 

  28. Tzartos, S. J., Seybold, M. & Lindstrom, J. M. Proc. natn. Acad. Sci. U.S.A. 79, 188–192 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Karlin, A. J. gen. Physiol. 54, 245s–264s (1969).

    Article  CAS  Google Scholar 

  30. Marshall, R. D. Biochem. Soc. Symp. 40, 17–26 (1974).

    CAS  Google Scholar 

  31. Chang, H. W. & Bock, E. Biochemistry 16, 4513–4520 (1977).

    Article  CAS  Google Scholar 

  32. Hamilton, S. L., McLaughlin, M. & Karlin, A. Biochem. biophys. Res. Commun. 79, 692–699 (1977).

    Article  CAS  Google Scholar 

  33. Poljak, R. J. et al. Proc. natn. Acad. Sci. U.S.A. 70, 3305–3310 (1973).

    Article  ADS  CAS  Google Scholar 

  34. Reddy, V. B. et al. Science 200, 494–502 (1978).

    Article  ADS  CAS  Google Scholar 

  35. Ito, H., Ike, Y., Ikuta, S. & Itakura, K. Nucleic Acids Res. 10, 1755–1769 (1982).

    Article  CAS  Google Scholar 

  36. Weinstock, R., Sweet, R., Weiss, M., Cedar, H. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 75, 1299–1303 (1978).

    Article  ADS  CAS  Google Scholar 

  37. Nakanishi, S. et al. Nature 278, 423–427 (1979).

    Article  ADS  CAS  Google Scholar 

  38. McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

    Article  ADS  CAS  Google Scholar 

  39. Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

    Article  ADS  CAS  Google Scholar 

  40. Nomoto, A. et al. Proc. natn. Acad. Sci. U.S.A. 79, 5793–5797 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, M., Takahashi, H., Tanabe, T. et al. Primary structures of β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251–255 (1983). https://doi.org/10.1038/301251a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301251a0

  • Springer Nature Limited

This article is cited by

Navigation