Skip to main content
Log in

Methane flux in the Great Dismal Swamp

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Methane is an important component of the biogeochemical cycle of carbon with potentially critical roles in both atmospheric chemical and radiation transfer processes1–4. Limited evidence is available which suggests an increase in global tropospheric methane during the last decade5,6. To understand and assess the possibility and implications of temporal variations in atmospheric methane requires improved quantitative knowledge of methane sources and sinks. We report here methane flux measurements made over a 17-month period in the Great Dismal Swamp, Virginia. These flux measurements indicate that Great Dismal Swamp soils can act as both a source and sink for atmospheric methane. In a waterlogged condition, swamp soils are a net source of methane to the atmosphere with seasonal variations in emission rates from <0.001 to 0.02 g CH4 m−2 day−1. During drought conditions, swamp soils consume atmospheric methane at rates of <0.001 to 0.005 g CH4 m−2 day−1. While these results should not be extrapolated to all swamp soils, they illustrate the potential complexity of processes which regulate net flux of methane between wetland soils and the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crutzen, P. J. in Physics and Chemistry of Upper Atmospheres (ed. McCormac, B. M.) 110 (Reidel, New York, 1973).

    Book  Google Scholar 

  2. Emhalt, D. H. & Schmidt, U. Pure appl. Geophys. 116, 452–464 (1978).

    Article  ADS  Google Scholar 

  3. Wofsy, S. C. A. Rev. Earth planet. Sci. 4, 441–469 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Sze, N. D. Science 195, 673–674 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Gradel, T. E. & McRae, J. E. Geophys. Res. Lett. 7, 977–979 (1980).

    Article  ADS  Google Scholar 

  6. Rasmussen, R. A. & Khalil, M. A. K. J. geophys. Res. 86, 9826–9832 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Koyama, T. J. geophys. Res. 68, 3971–3973 (1963).

    Article  ADS  CAS  Google Scholar 

  8. Mah, R. A., Ward, D. M., Baresi, L. & Glass, T. L. A. Rev. Microbiol. 31, 309–340 (1977).

    Article  CAS  Google Scholar 

  9. Zeikus, J. G. Bacter. Rev. 41, 514–541 (1977).

    CAS  Google Scholar 

  10. Atkinson, L. P. & Hall, J. R. Estuar. Coast. mar. Sci. 4, 677–686 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Martens, C. S. & Berner, R. A. Science 185, 1167–1169 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Swain, F. M. Adv. org. Geochem. 1, 673–687 (1973).

    Google Scholar 

  13. Baker-Blocker, A., Donahue, T. M. & Mancy, K. H. Tellus 29, 245–250 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Sebacher, D. I. & Harriss, R. C. J. envir. Qual. 11, 34–37 (1982).

    Article  CAS  Google Scholar 

  15. Whitehead, D. R. Ecol. Monogr. 42, 301–315 (1972).

    Article  Google Scholar 

  16. Carter, V., Garrett, M. K., Shima, L. & Gammon, P. Wat. Res. Bull. 13, 1–12 (1977).

    Article  Google Scholar 

  17. Day, F. P. & Dabel, C. V. Vac. J. Sci. 29, 220–224 (1978).

    Google Scholar 

  18. Dabel, C. V. & Day, F. P. Bull. Torrey bot. Club 104, 352–360 (1977).

    Article  Google Scholar 

  19. Day, F. P. Am. Mid. Nat. 102, 281–289 (1979).

    Article  Google Scholar 

  20. Oosting, H. J. The Study of Plant Communities (Freeman, San Francisco, 1956).

    Google Scholar 

  21. Gosink, T. A. & Kelley, J. J. J. geophys. Res. 84, 7041 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Harriss, R. C. & Sebacher, D. I. Geophys. Res. Lett. 8, 1002–1004 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Cicerone, R. J. & Shetter, J. D. J. geophys. Res. 86, 7203–7209 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Harriss, R. C., Sebacher, D. I., Bartlett, K. D. & Bartlett, D. S. Proc. Sym. Comp. Nonurban Troposphere, (American Meteorological Society, in the press).

  25. Dacey, J. W. H. & Klug, M. J. Science 203, 1253–1255 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Kelly, C. A. & Chynoweth, D. P. Limnol. Oceanogr. 26, 891–897 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Rudd, J. W. M. & Hamilton, R. D. Limnol. Oceanogr. 23, 337–348 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Sansone, F. J. & Martens, C. S. Limnol. Oceanogr. 23, 349–355 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Barber, L. E. & Ensign, J. C. Geomicrobial J. 1, 341–345 (1979).

    Article  CAS  Google Scholar 

  30. Fallon, R. D., Harrits, S., Hanson, R. S. & Brock, T. D. Limnol. Oceanogr. 25, 357–360 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Harrits, S. M. & Hanson, R. S. Limnol. Oceanogr. 25, 412–421 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Whittenbury, R. H., Dalton, R. H., Eccleston, M. & Reed, H. L. in Proc. Congr. on Microbial Growth in C1 Compounds 1–9 (1974).

    Google Scholar 

  33. Ehhalt, D. H. & Heidt, L. E. J. geophys. Res. 18, 5265–5271 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harriss, R., Sebacher, D. & Day, F. Methane flux in the Great Dismal Swamp. Nature 297, 673–674 (1982). https://doi.org/10.1038/297673a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297673a0

  • Springer Nature Limited

This article is cited by

Navigation