Skip to main content
Log in

Optical spectroscopy in a shocked liquid

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Scientists in the USSR have reported chemical effects of shock waves in condensed materials which they cannot attribute to the effects of pressure and temperature. They postulate the existence of “catastrophic” chemical effects in the region of near-discontinuous change called the “shock front”1,2. Direct testing of this postulate requires time-resolved observations of chemical processes as the sample is traversed by the shock, and to this end we report here the development of methods for the measurement of temporal changes in the electronic spectra of condensed materials in such conditions. The time resolution is about 3 × l0−8s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham, R. A. in Proc. int. Conf. on Metallic Effects of High Strain Rate Deformation and Fabrication, Albuquerque (1980).

    Google Scholar 

  2. Dremin, A. N. & Breusov, O. N. Priroda No. 12, 10–17 (1971). (Transl. SAND-80-6003, 1980).

  3. Parsons, C. A. Phil. Trans. R. Soc. A220, 67–108 (1920).

    ADS  Google Scholar 

  4. DeCarli, P. S. & Jamieson, J. C. Science 133, 1821–22 (1961).

    Article  ADS  CAS  Google Scholar 

  5. Davison, L. & Graham, R. Phys. Rep. 55, 256–379 (1979).

    Article  ADS  Google Scholar 

  6. Sheffield, S. A. thesis, Washington State Univ. (1978).

  7. Sheffield, S. A. & Duvall, G. E. Proc. Symp. on High Dynamic Pressures (CNES, Paris, 1978).

    Google Scholar 

  8. Duvall, G. E. & Moore, D. B. Poulter Laboratories Technical Rep. No. 017–59 (Stanford Research Institute, California, 1959).

    Google Scholar 

  9. David, H. G. & Ewald, A. H. Austr. J. appl. Sci. 11, 317–320 (1960).

    Google Scholar 

  10. Gaffney, E. S. & Ahrens, T. J. J. geophys. Res. 78, 5942–5953 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Goto, T., Ahrens, T. J. & Rossman, G. R. Phys. Chem. Miner. 4, 253–263 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Herzberg, G. Electronic Spectra and Electronc Structure of Polyatomic Molecules, 504 (Van Nostrand, New York, 1967).

    Google Scholar 

  13. Fowles, G. R. et al. Rev. Scient. Instrum. 41, 984–996 (1970).

    Article  ADS  Google Scholar 

  14. Yakusheva, O. B., Yakushev, V. V. & Dremin, A. N. Russ. J. phys. Chem. 51, 973–975 (1977).

    Google Scholar 

  15. Ogilvie, K. thesis, Washington State Univ. (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duvall, G., Ogilvie, K., Wilson, R. et al. Optical spectroscopy in a shocked liquid. Nature 296, 846–847 (1982). https://doi.org/10.1038/296846a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296846a0

  • Springer Nature Limited

This article is cited by

Navigation